SCASM addendum, preliminary (2.33)

----------------------------------



One of the new features of CFS is the ability to handle .BMP

files. These must be uncompressed bitmaps with a color palette.

The BMP's can have an individual color palette. We are not

longer bound to an FS internal palette.

Usual sizes of CFS bitmaps are:

        256 * 256

        128 * 128

         64 *  64

         32 *  32

The Pixel coordinates for an 256 * 256 BMP are:

          0,   0  lower left (sw)

        255, 255  upper right (ne)

The small bitmaps are internally expanded to 256 * 256.



Note: If you exclude visual scenery elements in CFS it seems that you are also excluding your ground elevation definition at least if they are defined with instructions I_A3() and/or I_A9(). If this happens you have to inlude a "flat replacement" for them in your scenery.

You will recognise this problem by a messup of the screen display. Changeing the view to "up" and then return to the normal view will give you a correct screen display for a short moment.





New Area() types:                               CFS only ?

        E      for very large areas > 64K

               (in the moment SCASM may have buffering

               problems). Used in CFS's CLASSLIST.BGL

               Maybe this area should be only used for

               defining a classlist file.

        A      very short areas < 256 bytes





RGBSColor( a r g b )                              CFS/FS2K

        -

        Set RGB surface color.

        Surface colors are daytime sensitive, that is their

        brightnes depends on the suns position.

        -

        r       red value, 0...255

        g       green value, 0...255

        b       blue value, 0...255

        a       color attributes, flags (one hex byte)

                currently only the following values are

                known:

                Ex  with x (0 to F) giving

                    different values of opacity.

                    (zero opacity is complete transparent)

                EF  solid RGB color (full opaque)

                E0  transparent RGB color

                F0  the old FS5 color palette code in

                    R-chanel is selected (G=0 and B=0)







RGBLColor( a r g b )                              CFS/FS2K

        -

        Set RGB line color, for parameters see RGBSCOlor().





LoadBitmap( x type a r g b name_of_a_BMP_file )

        -                                          CFS/FS2K

        Loads a bitmap in uncompressed BMP format. These

        bitmaps usually have formats:

        256x256, 128x128, 64x64, 32x32 and uses 256 color

        palette.

        If the bitmap is smaller than 256x256 it seem to be

        expanded. You have to take this into account when

        dealing with bitmap coordinates.

        -

        x       unknown, always found 0

                This parameter may be omited in furure SCASM

                versions due to format correction.

        type    type/classification and flag bits for this

                texture.

                This classification is used in the

                Option/Setup menus

                i.e. for -> textuted ground ON/OFF selection.

                1   aircraft

                2   unknown

                3   water

                4   sky

                5   ground

                6   building

                Optional flag bits (FS2K). These flag bits

                enables the search and conditional load of

                replacement bitmaps with the following name

                template(s): 

                L   <name>_LM.BMP  night bitmap

                W   <name>_WI.BMP  winter bitmap

                F   <name>_FA.BMP  fall/autum bitmap

                S   <name>_SP.BMP  spring bitmap

                if needed use these flags as a prefix to the

                type number without spaces.

                example: L6 for a building with aditional

                night bitmap or WSF5 for a ground texture

                with aditional seasonal replacements.

        argb    color code, used if texture not found or

                disabled. see -> RGBSColor()

        name    Filename of the .BMP file.

                Long filenames allowed. Use quotation

                marks "" if containing spaces.

        -

        Remark: Do not use the old BitmapMode() instruction

        with this command.





Dwx( 93 1 )

Dwx( 93 0 )

I_93( s )

        -                                          CFS/FS2K

        unknown, often found just before LoadBitmap() or

        RGB.Color() maybe switch on/off a 3D feature

 



RRStart( typ wid x z y )

        old I_A8(...)

        -                                          CFS/FS2K

        Defines a new starting point for roads and rivers.

        Road and rivers are normally covered with textures.

        -

        typ     0   use last SurfaceColor() / RGBSColor()

                1   use last texture, Bitmap() / LoadBitmap()

                2   major road    -> v_road_major.bmp

                3   minor road    -> v_road_minor.bmp

                4   railroad      -> v_railroad.bmp

                5   river (small) -> v_river.bmp

        wid     width in m



        Note: this command should always be followed by an:

        RoadCont( delta_x  delta_z  delta_y ) or

        RiverCont( delta_x  delta_z  delta_y ) 

        command which is equal to the old RoadLineTo(...)

        command.

        In FS2K most rivers are still drawn with old

        RiverStart() RiverCont() sequence.





LoadBitmapClass( class )

I_A5( class )  obsolete

        -                                        CFS only ?

        This command loads and activates one of the

        registered tile bitmap classes for the use with

        I_9A().

        -

        class   Number of the bitmap class (0...255 in the

                default scenery). A class usually contains

                1 to 7 .BMP bitmaps.

        Note: The bitmap classes are defined in the file

        CLASSLIST.BGL. In the moment it is not completely

        tested how this works. It may happen that you

        cannot select these bitmaps if your scenery is too

        far away from the default scenery. If the selected

        bitmap class contains more than one .BMP they are

        displayed in some sort of "random" order in the

        following I_9A() instruction.

        Note: It is possible to use class numbers above 255.

        But such numbers are not contained in the default

        CLASSLIST.BGL.

 



MeshWith1Tex(

      nx ny    xwid ywid   xofs yofs

      bxo byo  flg  xbpg ybpg

      <list of elevation grid points>

     )

I_9A(  nx ny   xwid ywid   xofs yofs

      bxo byo  flg  xbpg ybpg

      <list of elevation grid points>

     )

        -                                         CFS only

        This command works similar to the old TexRelief()

        command. This is a user defined textured ground

        tile with an elevation grid map. The texture class

        has to be loaded with I_A5().

        Use this command always with Refpoint( abs ... ),

        otherwise your final elevation is not exactly

        defined. The actual size of the whole tile depends

        on the scale factor in the current reference

        point. In the default scenery the horizontal size

        of a tile is aproximately 7500 meters (abt. 4 nm).

        (total_x_size_in_meters = nx * xwid * scale_factor)

        -

        nx      the tile is devided into this number in

                x (E-W) direction.

        ny      the tile is devided into this number in

                y (N-S) direction.

                Normally both numbers are equal (1, 2, 4, 8).

        xwid    x size of one sub tile (total size is

                nx*xwid).

        ywid    y size of one subtile

        xofs    x offset for the left lower corner

                (south west)

        yofs    y offset for the left lower corner.

                these values are usually the negative

                number of half of the total tile size.

        bxo     bitmap pixel offset in x direction, usually 0

        byo     bitmap pixel offset in y direction, usually 0

        flg     flags, pupose unknown, normally 1

        xbpg	number of bitmaps per grid in x direction

                Due to the binary instruction format only

                values from 0.0625 (=1/16)

                to 15.9375 (=16 - 1/16) are possible.

                SCASM does not check these limits.

        ybpg    number of bitmaps per grid in y direction

                Note: it seems that CFS gets confused if

                xbpb and ybpg are not equal.

        <list..>

                The list of the elevation points. The

                fist point is in the south west. Only

                integer are numbers allowed.

                The number of points is:

                    (nx + 1) * (ny + 1)

                Example, for nx = 2  and ny = 2

                    (2 + 1) * (2 + 1) = 3 * 3 = 9



        Typical code sequence looks like:

        Area( 5 00:00  00:00  100 )

            PerspectiveCall2( :tile )

            Jump( :end )

            ;

        :tile

            Perspective

            RefPoint( abs :tile_end 1 00:00 00:00  v2= ### )

                    ; set V2 to a value about the diameter of

                    ; the tile

                    ;

            I_A5( 1 ) ; select bitmap class

            I_9A(  2 2  1882 2049  -1882 -2049

                0 0 1   4 4

                ; list of elevation points follows

                37  24  25 ; south row

                37  20  26 ; middle row

                30  18  30 ; north row

            )

        :tile_end

            Return

            ;

        :end

        EndA





MeshWithTexList(

      nx ny    xwid ywid  xofs yofs

      bxo byo  flg  xbpg ybpg

      <list of elevation grid points>

      <texture class map>

     )

I_A3( nx ny  xwid ywid  xofs yofs

      bxo byo  flg  xbpg ybpg

      <list of elevation grid points>

      <texture class map>

     )

        -                                         CFS only

        This command works similar to I_9A().

        The difference is that no texture needs to be

        selected before. The texture classes are

        activated from the texture class list included

        in this command.

        Only texture class numbers from 0 to 255 are

        possible because of the limited space in this

        command format (one byte per entry).

        The first texture is the south west one.

        the total number of texture classes for the map is:

            nx * xbpg * ny * ybpg

        Example: For a tile with

            nx = 2, ny = 2, xbpg = 4, ybpg = 4

            we will need

            2 * 4 * 2 * 4 = 64 entries for the texture map.





RotateToAircraft( :Lab  dx dz dy  fx fy fz  vx vy vz )              

I_A7( :Lab  dx dz dy  fx fy fz  vx vy vz )              

        -                                      CFS / FS2K ?

        This is a new sort RotatedCall.

        Can be used to automatically rotate something

        towards the players aircraft ;-)

        -

        :Lab    Label of the called subroutine

        dx      offset in x direction

        dz      elevation offset

        dy      offset in y direction

        fx      if this flag is 1, the x axis is rotated

                towards the players aircraft.

        fy      if this flag is 1, the y axis is rotated

                towards the players aircraft.

        fz      if this flag is 1, the z axis is rotated

                towards the players aircraft.

                Note, normaly only one of these flags

                should be used in one command.

        vx		variable containing x rotation angle,

                normally 0

        vy      variable containing y rotation angle,

                normally 0

        vz      variable containing z rotation angle,

                normally 0





EnumBitmaps( :Lab 0 ... 0 )

I_64( :Lab  0 ... 0 )

        -                                        CFS only ?

        The purpose of this command is not completely known.

        It has something to do with registering bitmap

        classes to use with user defined ground tiles.

        -> I_A1(). 

        There should be as many 0's as LoadBitmap()

        instruction follows.



RegisterBitmapClass( num x :Lab )

I_A1( num  x  :Lab )

        -                                        CFS only ?

        This command has something to do with the

        registering of the bitmaps for the ground tiles.

        Note: There can be more than one bitmap in one class.

        This is to avoid regular pattern tiles. In the CFS

        default scenery where the tiles are usually covered

        by 8 * 8 = 64 bitmaps one class contains up to 7

        bitmaps. But a lot of them like 0 = water has only 1

        bitmap in it.

        Note: It is possible to define classes higher than

        255, but they can only be used with I_A5()/I_9A()

        and not with I_A3().

        -

        num     number of the bitmap class to define

        x       unknown, only found values in the original

                classlib.bgl

                2, 3, 5, 6, 10, 11

        :Lab    points to the I_64() instruction just before

                the LoadBitmap()'s related to this class

        -

        Typical pattern example:

            Header( 1 47 49  9 11 )

            LatRange( 49 47 )

            Area( E 48:28  10:12  255 )

            :C0

                I_64( :C1 0 )

                LoadBitmap( 0 5 FE 128 128 128 water.bmp )

            :C1

                I_64( :C255 0 0 0 )

                LoadBitmap( 0 5 FE 128 128 128 pattern1.bmp )

                LoadBitmap( 0 5 FE 128 128 128 pattern2.bmp )

                LoadBitmap( 0 5 FE 128 128 128 pattern3.bmp )

                ;

                ; ... more instructions ...

                ;

            :C255

                I_64( :C_reg 0 0 0 )

                LoadBitmap( 0 5 FE 128 128 128 pattern4.bmp )

                LoadBitmap( 0 5 FE 128 128 128 pattern5.bmp )

                LoadBitmap( 0 5 FE 128 128 128 pattern6.bmp )

                ;

            :C_reg

                I_A1(   0 6 :C0 )   ; first class

                I_A1(   1 6 :C1 )

                ; ...

                I_A1( 255 6 :C255 ) ; last class

            EndA





SetCrashCode( code )                              CFS/FS2K

        -

        This instruction sets the crash code. Used in 3D

        library objects.

        -

        code    any value different than 0 seem to trigger

                a crash normally code 14 is used.





I_95( x1 x2 x3 )

        -                                        CFS/FS2K?

        Purpose of this instruction is not completely clear.

        It seem to be some sort of "object setup" for 3D

        library objects. If CFS libobjects are used without

        this instruction they do not have crash detection.

        If this instruction is used, the library object must

        have a special code for crash detection.

        In CFS this instruction is used only for 3D objects

        such as buildings, mountains, static vehicles, but

        not for 2D (flat) objects such as runways.

        -

        x1      in default scenery always 24 (0x18),

                with other values there is no crash

                detection.

        x2      in CFS default scenery always 56 (0x38)

        x3      found values in CFS default scenery:

                0

                256  = 0x100

                512  = 0x200

                768  = 0x300

                1024 = 0x400





I_96( :Lab r )

        -                                          CFS/FS2K

        A distance or radius test, used in CFS object library

        for crash detection.





I_98( :Lab  xofs zofs yofs  xwid hig ywid  x1 x2 x3 )

        -

        This is some sort of crash detection box similar to

        the common Monitor3D() command.

        The jump to :Lab is performed if plane is not in the

        box. Only found in CFS library 3D objects.

        -

        xofs    the middle of the box is shifted in E-W

                direction

        zofs    -"- up down direction

        yofs    -"- N-S direction

        xwid    total width in E-W direction

        hig     total hight

        ywid    total width in N-S direction

        x1      unknown, always found 0 (implemented as

                hex values)

        x2      -"-

        x3      -"-





I_A9( :Lab  xofs zofs yofs  xwid hig ywid  xang yang zang )

        -

        This is some sort of position detection similar to

        the common Monitor3D() and I_98() command.

        Only found in CFS library 2D objects as runways for

        "off runway" detection.

        The jump to :Lab is performed if plane is not in the

        box. The difference to I98() is unknown at the

        moment.

        -

        xofs    the middle of the box is shifted in E-W

                direction

        zofs    -"- up down direction

        yofs    -"- N-S direction

        xwid    total width in E-W direction

        hig     total hight

        ywid    total width in N-S direction

        xang    rotation angle around the x axis

        yang    rotation angle around the y axis

        zang    rotation angle around the z axis





How to use an CFS library object:

        -

        a typical calling sequence for an 3D object is:

        Area( A  48:21:59   10:52:05 100 )

            I_95( :OBJ 0x18 0x38 0x100 )

            ; some sort of object setup

            ;

            ShadowCall( :SHD ) ; draw the shadow if wanted

            PerspectiveCall( :PERSP )

            Jump( : )

            ;

        :PERSP

            Perspective

        :SHD

            RefPoint( rel :END1 0.5 48:21 10:52 V2= 10 )

            RotatedCall( :OBJ   0.00   0.00  64.00 )

        :END1

            Return

            ;

        :OBJ

           CallLibObj(0 9797FC57 8A930060 11D14AC5 A028DC02)

            ; these 'cryptic' numbers identify the library

            ;  and the wanted object in it

            ;

            Return

            ;

        EndA



        This is a typical calling sequence for an

        flat object:

        Area( A   52:07:35   05:53:52 100 )

            LayerCall( :Obj1 24 )

            Jump( :End )

            ;

        :Obj1

            Perspective

            RefPoint( rel :End1 1 52:07  05:53  V2= 1200 )

            RotatedCall( :The_Obj   0.00   0.00  -167.02 )

        :End1

            Return

            ;

        :The_Obj

            CallLibObj(0 9797FC57 8A930060 11D14AC5 A028DC9A)

            Return

            ;

        :End

        EndA





        A normal 3D Object should start with the

        following code:

            ...

            I_96( :all_ok 50 )	; distance (radius?) test

            I_98( :no_crash   0  20  0    40  40  40    0  0  0 )

            SetCrashCode( 14 )

        :no_crash

            Return

            ;

        :all_ok

            Points( 0 ...

            ; the normal object code follows here...

            ...









Important note(s):

All names and the parameters may be changed in the final version.

Most names are "artificial". Ideas for better names are welcome.



----------------------------------------------------------





