------- Annex 1 -------------------------------------------





Parameter calculation (1.7 (DOS) / 2.x (Win95) and later)


---------------------------------------------------------


With a very few exceptions it is possible now to do some calculations with the parameters for the commands. Since there is no delimiter character like the "," in other programming languages SCASM needs some help. This is why


you have to use squared brackets "[]" in every arithmetic expression, i.e. [90-3].


Expressions are always evaluated from the left to the right 


regardless of the common mathematical rules. The only way to change this is to use nested brackets. Expressions can also contain macro parameter


numbers like this:





        [[90 - %3] / 45 ]





Within expressions the following operators are allowed:


        +


        -


        *


        /


        ==      equal (comparison)


        !=      not equal


        <       less than


        <=      less or equal


        >       greater than


        >=      greater or equal


        |       OR (bitwise)


        ^       exclusive OR


        &       AND (bitwise)


        <<      shift left


        >>      shift right





Note, to perform bitwise operators SCASM converts the involved parts of the expression into long integer format.





Now you can also "cast" the number format if you want. Some examples:


If parameter is labeled as decimal:


        12345           normal (default) decimal format


        0xAB23          hex format, with "0x" prefix


        0b101010101     binary format, with "0b" prefix


        AB23            hex number without "0x" prefix


                        causes error





If parameter is labeled as hex:


        AB23            normal (default) hex format,


                        without prefix


        0d12345         decimal format, with "0d" prefix


        0b1010101       binary format,





To avoid problems with the current number format recognision routine please use only upper case charaters for hex numbers and use only lower case characters in the "number cast" sequences


"0x." & "0b." & "0d.".





Warning:


--------


The expression evaluator is called for every numeric parameter input. As a side effect arithmetic expressions like "%3-5" will also work.


If the evaluator is called without the "[" at the beginning of the expression, it stops at the first space charater. Therefore I strongly recommend to use the brackets and separate the elements of the expression by spaces. This will also increase the readability of the source code.





Limits:


-------


Since SCASM is a one_pass assembler :Label's in arithmetic expressions cannot be used, if these :Label's are defined in a later source text line. This is because the :Label is still undefined when the expression is evaluated.





NOTE: All calculations are done at compile time, NOT at runtime.








------- Annex 2 -------------------------------------------





General referencepoint memory (1.7 / 2.0)


-----------------------------------------


There is a general referencepoint memory which can be set with the command:





        GRP(  <Lat> <Lon> )


        Name may be changed





Temporary referencepoint memory


-------------------------------


Every time an Area() command is compiled, the position (Lat/Lon) is stored into a temporary memory. This position is valid until the EndA command is executed. This is not only true for the automatically stored position but also if you explizit define a new GRP(). So a GRP() defined in an Area() 


is really a temporary one.


You can use the stored position to calculate a new referencepoint position in every command that requires a Lat/Lon pair input.





There are two options to calculate a new position:





        d <delta_Lat/north-south> <delta_Lon/east-west>





        r <heading> <distance>





If your new position is 150 meters east and 60 meters south of the stored position you can enter:





        RefPoint( abs :Label 1.0  d -60 150 )





and SCASM will calculate the new reference point.





If your new position (i.e. for LandMe) is 400 meters away in


heading 273.4 degrees you can enter:





        LandMe ( r 273.4 400    0  90


                 r  93.4 400    0  27


                )





Note: be carefull, the order of the delta distances differs from that in FSOFFS (one of my older programs). This is made to match with the Lat/Lon positions. Do not use this feature for long distances.








------- Annex 3 -------------------------------------------





Variables


---------


SCASM variables are identified by the "$" sign as the first character. They can be used in arithmetic expressions.





Uvar( $name <expression> )


        -


        This command is used to declare and initialise the


        user variable $name.


        If this variable is declared inside an Area() it


        is asumed to be an temporary variable and is


        deleted when the EndA instruction is compiled.





There are also some SCASM internal variables available.





        $IC             internal instruction counter,


                        valid in Area()'s


        $PI             The number PI = 3.414 (2.02)


        $Section        This is the SCASM internal


                        section bit variable.


                        There is only one bit set for


                        the currently scanned section


                        (i.e. 0x001 for section 0 = nav


                        or 0x200 for section 9 = visible


                        scenery).(2.03)


        $Version        The SCASM version number * 100





Variables declared outside of an Area() are valid from the declaration point and can be changed even from inside an Area(). But Variables declared in an Area() are assumed to be local and will be deleted when the EndA command is compiled. User variables are not necessary deleted at the end of a macro!





The user variables have nothing to do with FS5/FS6 internal variables.They are only tools for the experienced programmers.








------- Annex 4 -------------------------------------------





Functions (2.02)


----------------


To improve the parameter calculations there are now some functions available. Please remember, all calculations are done at compile time. Function names are case sensitive.





        int[ <expression> ]


                This function converts the result of


                <expression> into an integer number by


                truncating the fractional part.


        round[ <expression> ]


                This function converts <expression> into an


                integer number by doing a normal round


                up/down.


        sqrt[ <expression> ]


                This calculates the square root of


                <expression>. The result is still a


                floating point value. If needed you


                can use:


                    round[ sqrt[ 100 / 2 ] ]


        abs[ <expression> ]


                This function makes sure that the result


                of <expression> is always a positive number.





        sin[ <expression> ]


        cos[ <expression> ]


        tan[ <expression> ]


        asin[ <expression> ]


        acos[ <expression> ]


        atan[ <expression> ]


        atan2[ <expression> <expression> ]


                This is the atan2( y / x ) function. Format


                corrected in version 2.07


        adrpat[ :Label ]


                This address patch funktion is a workaround


                for the address calculation problem in


                Dwx() commands in the case the label is


                defined in a later line of the source code.


                This function simply adds the current


                address to the internal patch table and


                returns a 0 value which will be patched


                later. (v.2.04)


        ipt[ index flag ]


                -


                version 2.07


                index   the wanted point's index number


                flag    selects the coordinate element


                        (x, y, or z) of that point.


                -


                This function imports point coordinates from


                an existing SCASM internal point list.


                For example, you have defined an point list


                somewhere in an Area(). SCASM holds an


                internal copy of this list for the polygon


                vector automatic function. This function


                gives you access to this list, so you can


                copy coordinates to instructions which do


                not accept point numbers.


                If you want to draw a dotted line with


                7 dots from, lets say, point number


                5 to 6 of your list, you can write:


                DotLine( ipt[5 x] ipt[5 z] ipt[5 y]


                         ipt[6 x] ipt[6 z] ipt[6 y]   7 )








------- Annex 5 -------------------------------------------





Some color codes to use with the ..Color() commands (hex values). These color codes differ from the numbers you find in the bitmap files.





Colors of variable brightness, depending of the time of


day (F0 colors)


        00      black


        01      dark gray


        02      gray


        03      light gray


        04      white


        05      red


        06      green


        07      blue


        08      orange


        09      yellow


        0A      brown


        0B      beige


        0C      orange/brown


        0D      green/gray


        0E      blue/marine





constant colors, use it for ilumination.


        0F      red


        10      green


        11      blue


        12      dark green/blue


        13      orange


        14      yellow


        15      white (high intensity)


        16      white/light gray (low intensity)





other colors


        21      dark green, replacement color for


                some bitmaps ?


        2F      brown








------- Annex 6 -------------------------------------------





Some often used FS internal variables (hex)





Most of this variables should not be modified by the user !


Be very carfull when using other FS variables. It is known that the use of some other varables which work in FS5.1 can crash FS6.0


        -


        282     running bit timer. There is one bit running


                from 0000.0000.0000.0001


                  to 1000.0000.0000.0000


                in about 6 seconds. Used for flashlights.


        284     crash code (decimal). If you set one of


                these values FS will detect a crash.


                2       mountain crash


                4       crash


                8       splash


                14      building crash


                16      crash with other aircraft (ignored


                        in FS6)


        288     Aircraft is in fuelbox flag. Set it to


                1 and your fuel tanks are filled. Aircraft


                speed must be nearly zero, otherwise it


                seems FS5 ignores this flag.


        28A     FS version number, BCD coded.


                hex/bcd decimal version


                0500    1280    5.0


                0510    1296    5.1


                0600    1536    6.0/FS95


        28C     Time of day code


                1       day


                2       dusk/dawn


                4       night


        33B     shortest 3D distance aircraft


                -> referencepoint


        340     textured ground flag


        342     textured buildings flag


        346     scenery density code


                0       very sparse


                1       sparse


                2       normal


                3       dense


                4       very dense


        37E     Aircraft delta X(east) coordinate


                from Refpoint


        382     Aircraft delta Z(alt) coordinate


                from RefPoint


        386     Aircraft delta Y(north) coordinate


                from RefPoint


        38A     number of the day (1...365)


        38C     year


        390     textured water flag (FS5.1 & FS6)


        6F8     season code (northern hemisphere)


                0 = winter


                1 = spring


                2 = summer


                3 = autum








------- Annex 7 -------------------------------------------





        deleted





------- Annex 8 -------------------------------------------





Hex calculation





For some parameters I chose hex values as input. The reason for this is to give you full access to the data records.


To avoid the risk to confuse the new expression evaluator you should only use upper case letters for hex numbers!


Unfortunately hex calculation is not as easy as normal calculation, but I will try to give some help.


       Hex conversion table:


        decimal hex


        0       0


        1       1


        2       2


        3       3


        4       4


        5       5


        6       6


        7       7


        8       8


        9       9


        10      A


        11      B


        12      C


        13      D


        14      E


        15      F





Example:


        We want to calculate the flag parameter for


        an ILS. We have to add the following values:


        80      for the localiser


        40      for the glidepath transmitter


        01      for the DME (if wanted)


                As the '8' and '4' are the same in both


                number systems we simply add them in the


                decimal system. This yields 12. The


                conversion Table gives you the letter 'C'


                as hex digit.


        ---     With this we get the result:


        C1


        ===





        If you are not familar with hex arithmetics you


        can use the calculator in MS-Windows. You only


        need to change it from standard to scientific in


        the calculator menu.








------- Annex 9 -------------------------------------------





Information about aditional texture handling options





Sometimes it is pretty difficulty to find the correct X-Y-coordinates for textured polygons. One of the most common examples for this are mountains.


If you are such an lazy scenery designer like me <g> you can try the different features of the bitmap automatic. In this version bitmaps are always aligned to the lower edge or the lowest point of the polygon.


Texture automatic is limited to polygons with a maximum of 16 vertices (vers. 2.29 and later).





        T       enables Texture Point calculation automatic


                for any ..TexPoly's. SCASM tries to use the


                whole texture map, but the aspect ratio is


                maintained. Only valid with ..TexPoly's


        B       The same as above, but texture aspect ratio


                is not maintained. This may result in a


                different scaling for the bitmap in x- and


                y- direction. Only valid with ..TexPoly's


        R       This flag reverses the bitmap in y direction


                (up/down). Only valid with ..TexPoly's. This


                works only with the T or B flag active.





                aditional flags in version 2.04





        S scale 


                maybe changed in next version !!!


                With the above flags allone you cannot


                control the size of the pixels (scaling).


                If this flag is used SCASM expects a


                scaling factor for the next parameter. The


                scaling factor can be a fractional number


                or even an expression.


                This scale factor can be calculated as:


                (last_usable_pixel


                     - first_usable_pixel) / longest_dist


                If you want to use the whole bitmap and your


                distance is 25 meters for your largest


                polygon edge, this is simply:


                  255 / 25 = 10.2


                This scale factor is used for X and Y


                scaling.





        L x1 y1 x2 y2


                This flag indicates that 4 aditioanl


                parameters follow.


                These parameters are bitmap coordinates to


                limit the usable bitmap area for this


                polygon. SCASM tries to stretch this area


                to fit the polygon. If this flag is not


                used SCASM asumes


                x1 = 0, y1 = 0, x2 = 255, y2 = 255


                for the first and the last usable pixel.


                This is the whole bitmap.


        N       No reset of the S and L values.


                Normally the scale factor and the limit


                values are resetted everytime a polygon


                is computed. If you want to use the


                values from a previously defined polygon,


                use this flag to tell SCASM not to reset


                these values.


        example:


                ...


                TexPoly( ats [127/25] L 0 0 127 127   0 1 2 )


                TexPoly( atn                          1 2 3 )


                ...


                In this example only a small part of the


                bitmap is used and the bitmap scale factor


                is calculated to fit a polygon with up


                to 25 meters width (x) and height (y).


                The second polygon is calculated with the


                same scaling and pixel limits since the


                previous values are not resetted.





------- Annex 10 ------------------------------------------





Some important BGL section numbers and their hex bitmask values internally used by SCASM. Used in section mask's in Mif() and SCLINK.





        0       00001   Nav frequencies (ILS, VOR)


        1       00002   Synth tiles (Seed) size 1 to 6


        ...


        6       00002   Synth tiles size 6 (smallest, high


                        priority / all tiles are internally


                        handled with the same mask by SCASM)


        9       00200   visual scenery


        10      00400   object library


        11      00800   Airport menu (FS6 and before)


        13      02000   ATIS


        14      04000   NDB


        15      08000   dynamic scenery


        16      10000   Markers, LandMe, TimeZone,


                        elevated surface





------- Annex 11 ------------------------------------------





Macros for use with the Airport 2.xx program.


Macro files for Airport have a standard file extension of ".API" and they are using a standard parameter set. Not all macros are using all parameters. Thats why sometimes dummy values are passed to a macro.


        %1      Latitude


        %2      Longitude


        %3      range (for the Area() command)


        %4      scale factor (used in reference points)


        %5      heading


        %6      user parameter 1 (usually color 1)


        %7      user parameter 2 (usually color 2)


        %8      user parameter 3 (usually color 3)


        %9      user parameter 4 (usually color 4)


        %10     v1 value


        %11     altitude for reference point


        %12     scenery complexity code


        %13     "v2="


        %14     v2 value








-----------------------------------------------------------








