SCASM - Scenery Assembler 2.36

Disclaimer

SCASM.EXE and all related files come as they are. Use them at your own risk. The author of the SCASM package is not liable for any problems caused by these files.

Copyright (C) 1995-2000 by Manfred Moldenhauer.

 e-mail: 100117.1465@compuserve.com

 M_Moldenhauer@compuserve.com

Command Reference for SCASM

Every scenery you are creating with this programm has to start with the Header command followed by the LatRange command. These two commands are initialising the minimum file header for further actions. These two commands can only be omitted if you want to create a RAW output file.

After this you can enter any command in any sequence with one exception.

Visual scenery commands have to appear only within area blocks, and in area blocks no other commands are allowed.

Instructions:

Header(type [*] TopLat BottomLat RightLon LeftLon)

 -

 This command MUST be the first in your (main) scenery

 input file. It generates the BGL-file header which

 defines the boundaries of the area covered by your

 scenery file.

 The Header is not needed for RAW BGL output

 files -> Area(R).

 -

 Lat/Lon values in the format DD:MM:SS.SSSS

 type 1...4, this number has something to do with

 your *.VIS files.

 The following numbers are associated with:

 1 visual scenery (sect 9),

 synth blocks (sect 1..6)

 FS98 AFD-BGL's

 2 crop duster world, do not use it

 3 navaids as VOR, ILS, NDB, Markers

 4 airport menu (FS5 style), ATIS

 It seems these numbers shows FS5 how important the

 information in this file is and how often to scan

 this file for scenery updating. So you should put all

 visible things into type 1 and less important things

 such as menu and land-me data into type 4 files.

 But if you are only designing a small scenery you can

 put all into one file.

 * If the optional '*' character is entered the

 correct order of RightLon and LeftLon is not

 tested. You will need this option only if

 your scenery is crossing the date line

 (180th meridian). Normaly not used!

LatRange(BottomLat TopLat)

 -

 This command has to follow the Header command.

 The FS5 scenery is organised in latitude bands and

 this instruction defines one of them. There can be

 several latitude bands in one scenery file

 (.BGL file) but SCASM can only handle one of it per

 source file. If your scenery covers a large north to

 south distant, lets say more than 2 to 3 degrees

 you have to use different source files for each

 latitude band.

 You then have the option to combine the resulting

 .BGL files with the help of SCLINK.

 The LatRange instruction is used for all BGL-sections

 except for

 ground tiles (Seed's/sections 1 to 6),

 BGL libraries,

 RAW output, and

 new facility BGL's (section 20).

Menu(Scenery Title String) FS5 - FS95

 -

 If you want to define some start positions which can

 be chosen from the Airport menu use this command.

 Length is limited to 20 characters now. Use the

 '{' brackets instead of '(' if part of Title String.

 Only one Menue() command allowed in this version.

 FS98 uses different data structures for the "goto

 airport" menu. See the file "FACDAT.DOC" for

 generating these new facility data.

 To see this 'old fashioned' menus click the

 "FS6 and before" button in the FS setup. Also FS98

 does not set the navaid frequencies.

MenuEntry(Lat Lon alt hdg COMfrq

 NAV1frq OBI1 NAV2frq OBI2

 Text Info String, max 40 characters)

 -

 Data for a startsituation. There MUST be a Menu(..)

 command in the file BEFORE you enter a MenuEntry(..)

 command, otherwise you got an sequence error from

 SCASM. The info string is limited to 40 characters.

 Note: Unlike previous versions FS98/CFS do not

 support the settings of the radios from this menu.

 Also, if you want to use this menu in FS98, you have

 to select "FS6 and before" in the "Goto Airport"

 menu.

 -

 Lat Latitude

 Lon Longitude

 alt Altitude in meter. If set to 0 FS5 will

 automatically adjust to ground level.

 Floating point numbers accepted.

 hdg Heading (magnetic) in degrees -> 23.33

 COMfrq Frequecny of the COM radio -> 123.40

 (first digit ignored)

 NAV#frq Frequency of the NAV# radio. -> 116.30

 OBI# OBI# settings in degrees (integer) -> 271

NDB(Freq Rng ID Mame Lat Lon Elev)

 -

 This command defines an NDB (Non Directional Beacon).

 -

 Freq frequency in kc, range 200.0 ... 526.5

 Rng Range in nm (integer)

 ID 5 char NDB id string

 Name 24 char Name string, if you want to include

 space characters use '_' instead.

 Lat latitude of the position

 Lon longitude of the position

 Elev elevation (MSL) in meters (integer)

VOR(Frq Rng Flags Magvar ID Name

 Lat Lon Elev Hdg

)

 -

 Defines an VOR. For details see -> ILS.

ILS(Frq Rng Flags Magvar

 ID Name

 Lat Lon Elev Hdg ; localizer

 Lat Lon Elev Slope ; GP

)

 -

 Defines an ILS (instrument landing system)

 -

 Frq frequency in mc -> 113.45

 freq. range VOR 108.0 ... 117.975 mc

 freq. range ILS 108.0 ... 111.975 mc

 Rng range in nm (integer)

 Note: you can enter values up to 255.

 It seems FS5 can handle this, but the DME

 display will always show "99" if this

 value is exceeded.

 Flags any 2 digit hex value is accepted

 80 localizer on ON bit

 40 glideslope transmitter ON bit

 20 localiser back course not available

 10 DME at glideslope transmitter position bit

 08 DME OFF bit (-> 09 is DME without VOR)

 04 voice available (ID ? ATIS ?)

 02 TACAN

 01 DME availabe bit

 example values:

 00 or 02 -> VOR

 01 or 03 -> VOR-DME, VORTAC

 Magvar magnetic variation (eg.-3.7). Only for VOR.

 Normally 0 for ILS. If 0 the VOR/ILS is

 aligned with true north.

 To get a nav receiver readout which

 corresponds to your compass you should enter

 the magnetic variation. This gives the VOR

 the same error than your compass.

 ID ID string, up to 5 characters

 Name Name string, up to 24 characters.

 Use '_' in place of ' '.

 Lat latitude

 Lon longitude

 Elev elevation in meters (MSL, integer)

 Hdg heading (true) in degrees (ILS only,

 always 0 for VOR) -> 144.1

 Slope slope angle of GP transmitter -> 3.0

 Note: There is a known problem with the slope

 in the southern hemisphere in FS5.0 and

 FS5.0a.

 Remark: Not all ILS systems have an DME equipment.

 In the USA DME's usually show the localiser

 distance.

 In Europe DME's usually show the touch down

 zone (TDZ) distance (position of the GP

 antenna).

IM(Lat Long Elev)

MM(Lat Long Elev)

OM(Lat Long Elev)

 -

 Marker bacons:

 IM inner marker

 MM middle marker

 OM outer marker

 Lat Latitude

 Lon Longitude

 Elev elevation in meters (MSL, integer)

ATIS(Rng Lat Lon Frq RW1 RW2 RW3 RW4 Text)

 - FS5 .. FS98

 Defines an Automatic Terminal Information System.

 -

 Rng range in km (int)

 LAT/Lon ATIS position

 Frq frequency in mc like 123.45

 freq. range COM 118.0 ... 137.0 mc

 RW1 runway to use for wind directions 0...89°

 RW2 runway to use for wind directions 90...179°

 RW3 runway to use for wind directions 180...269°

 RW4 runway to use for wind directions 270...359°

 Text Any ATIS text you want. The following special

 text characters triggers FS5 to send the

 following strings:

 %A " weather -",

 %B " observation ",

 %C " ##:## zulu ",

 %D ---

 %E " Temperature ## F -",

 %F " Information ",

 %G " Landing and departing runway # -",

 %H " Advise controler ",

 %I " Altimeter ##.## -",

 %J " Visibility ## -",

 %K " winds $$$$ -",

 %L " Measured ceiling ##### $$$$,",

 %M " on initial contact ",

 Note: If you have very long messages you can split

 them up into several lines. All <CR/LF> sequences

 within the opening and closing brackets of this

 instruction are converted into a single space

 character. The input line buffer size is about 4000

 characters but it seems the current version of FS5.0

 can only handle 255 characters. If you need the

 '(' & ')' replace them by

 '{' & '}'. Also the underscores '_' and the NewLine

 charactersare converted to spaces.

 NOTE: This command is ignored by FS2K !

LandMe(Lat1 Long1 Elev1 ID1

 Lat2 Long2 Elev2 ID2

 Airport name Rwy

)

 -

 This is the data record needed for the 'Land Me'

 option in FS5. This option is only available with the

 default Cessna.

 -

 Lat#/Lon# Defines the positions of the

 touchdown points for each end of

 a runway.

 Elev elevation of the touchdown points in

 meters (MSL). -> 17.3

 ID# runway ID of this touchdown point

TimeZone(TopLat BottomLat RightLon LeftLon minutes ds1 ds2)

 -

 Defines a rectangular time zone. Make sure the date

 line (180th meridian) is not crossed by the defined

 area.

 -

 minutes time difference in minutes to UTC

 (GMT)

 ds1 related to daylight saving time

 (start ?)

 ds2 related to daylight saving time

 (end ?)

 -

 ds1, ds2 not fully tested, set to 0 if no dst, found

 values in original files: 0,0 1,1 2,0 2,1 2,2

 1,4 1,3 1,0

GenExcl(name.BGL mask

 TopLat1 BottomLat1 RightLon1 LeftLon1

 TopLat2 BottomLat2 RightLon2 LeftLon2

)

 - FS5 .. FS98

 name name of the generated *.BGL file

 (ie. MY_INCL.BGL)

 LL1 Lat/Lon boundaries for the BGL file header;

 same as -> Header()

 LL2 Lat/Lon boundaries for the scenery (usually

 equal to LL1)

 mask 16 bit hex value to indicate the CD data to

 be suppressed. Any combination of the below

 bits allowed.

 01 no visual scenery, runways

 02 no VOR, ILS

 04 no NDB ?

 08 no ATIS

 other bits not found yet

 to exclude all foreign scenery simply enter

 F for the mask. It seems not all possible

 combinations are allowed.

 -

 Generates a small BGL file for suppressing specified

 FS5.1 CD default areas. It seems theese files have

 effects to all other files not in the same scenery

 directory than this file.

 You can define more than one exclude file for the

 same scenerie but be very carefull when defining the

 boundaries. Move these file(s) to the same

 subdirectory as your other BGL files.

 Note 1: you cannot disable any synthetic scenery

 tiles (including mountains) with these file(s).

 Note 2: The original version of FS6/FS95 has some

 problems with these files (The ABOUT MENU for this

 version shows Version 6.00 Build 117). Microsoft (TM)

 released a patch to solve this problem. The file name

 is FEPATCH.EXE.

 See -> SC_HINTS.TXT for more information.

 Note3: Exclude files do not longer work in FS2K

Visual scenery commands:

The following commands are for the visual scenery section (section 9). Before you can use one of these commands, you have to define an Area block.

No other commands are allowed in such blocks except pseudo commands as Mif, Uvar, Macro ...

Area(type Lat Lon Rng)

 -

 This marks the begin of an block of visual scenery

 commands.

 type 5, 8, B

 This is simply the first byte of the

 generated hex code.

 The visibility ranges are different for each

 type. I do not know the absolute limits.

 I have different values from different

 sources for them.

 5 0 ... 22 km (0 ... 40 km)

 8 40 ... 130 km

 (invisible 0 ... 40 km)

 B 0 ... 255 km (0 ... 130 km)

 I obseved this range can be influenced by the

 scaling factor and the V# parameters of the

 RefPoint() command.

 Lat/Lon location of this area

 Rng range in km units (integer). It seems this

 value controls how long this area needs to

 be hold in the scenery buffer. This does not

 automatically mean that the objects in this

 Area() are displayed, since the visibility

 is also controled by the V# parameters in

 the reference points (within this Rng limit).

 Since it is told FS5.1 can only hold about

 256 k bytes of scenery, you should not use

 unrealistic large values to avoid wasting

 memory.

 Note! In FS5 a single scenery area is limited to

 16kB. SCASM 1.6g/1.67 (and above) is testing this

 limit and will produce an error message, but the

 scenery is compiled correctly up to about 24..32 Kb

 (depending on the current buffer status).

 FS98 is able to handle larger objects. Use SCASM's

 SET() command to enable larger object compilation.

EndA

 End_of_Area

 This marks the end of an Area block. No code is

 generated. You can see this command as a special

 jump destination. All unresolved Jump()s and all

 'empty' labels (-> only ':') are directed to this

 location.

 This command also causes some internal actions such

 as patching all label references and writing buffers

 to disk.

Area(R)

 -

 This is an option to produce a raw BGL output of

 visual scenery objects.

 To enable the RAW output you also bave to call SCASM

 with the -raw command line switch or the Set(raw 1)

 pseudo command to suppress the normal BGL file

 header.

 Also no Header() and LatRange() commands are needed.

 The RAW output file cannot be used directly in FS and

 also SCLINK cannot handle it.

 The output file starts with a long integer number

 (4 bytes) which indicates how many valid bytes of BGL

 data will follow.

 SCASM can only compile one "raw" object per compile

 run. A typical source file for raw output will look

 like:

 Set(raw 1)

 Set(areamx 64)

 Area(R)

 ...

 ... ; your BGL instructions

 ...

 EndA

RefPoint(type :Label scale Lat Lon [...])

 -

 This command defines a reference point for further

 actions. All distances entered now are relative to

 this point. If FS5 decides the viewer is too far

 away, a jump to :Label is performed and the following

 commands are not executed. For the Refpoint type

 selector I simply chose the first digit of the

 generated hex code.

 The optional v1= and v2= parameters may help the

 drawing systen to speed up things in dense sceneries.

 They are used to control the visibility of objects.

 -

 type type of the RefPoint. There are different

 types of RefPoints as follows:

 2 or

 abs absolute referencepoint, MSL (main

 sea level) This type is used if an

 absolute elevation setting is needed.

 The elevation is set with the "E="

 parameter. The scenery object is

 put on this level, regardless what

 the altitude definition in the

 coresponding synth tile says.

 7 or

 rel relative referencepoint, always 0 AGL

 The altitude is adjusted to the same

 level as defined in the Synth Tile

 block you are standing on. The "E="

 parameter is ignored.

 3 or

 ns Reference point with NO SCALE

 setting. This type is often used for

 very detailed and complex objects.

 The altitude setting for this

 referencepoint type is always

 absolute (=MSL).

 For setting the scale factor use the

 -> SuperScale() / SetScaleX()

 command.

 :Label symbolic name of a jump destination

 scale scale factor, if scale = 1 all distances are

 in meters. Floating point values accepted.

 This parameter is not allowed for type "ns".

 Lat/Lon Position

 these optional parameters are prefixed by an

 identifier

 E= ### elevation of this point in meters (MSL),

 not for type 7/rel. Always required for type

 "abs" and "ns".

 v1= ## visibility range of this object in meters

 (int)

 v2= ## radius of this object in design units (int).

 This is in meters if scale factor is 1.

 -

 Some other special reference point formats are:

 RefPoint(nsi :Label varptr [...])

 no scale with indirect position via varptr.

 (v1= ## v2= ## optional) For scaling use

 SuperScale()

 RefPoint(ind :Label scale varptr [...]

 reference point with indirect position via

 varptr. (v1= ## v2= ## optional)

RefPoint(ind :Label scale var [...])

 -

 This reference point is used in the aircraft model

 files and uses an indirect position definition.

 -

 ind the keyword "ind" indicates that indirect

 positioning is used.

 var the address of the variable area that holds

 the current position (Lat, Lon, Alt).

ShadowPos(Lat Lon ALt)

 -

 This command sets the position for a shadow of an

 static object which is not on the ground like the

 blimp in thc Chicago scenery.

 ShadowPos(...)

 SuperScale(...)

 ShadowCall(...)

ShadowPosInd(var)

 -

 (SHADOWVPOSITION in FS98SDK)

 This command sets the shadow position of an non

 static object like an aircraft. Since the position is

 variable in this case it is addressed indirect by

 a pointer to an array of variables.

 Used in .MDL files and dynamic object libraries.

ReScale(:Label V1 V2 scale) -> FS98 SDK

SetScale(:Label V1 V2 scale)

 -

 This command sets/changes the scale factor for normal

 reference points (abs, rel).

 If the visual range test parameters are used, a range

 test is done.

 -

 V1, V2 visual range test parameters (used if not 0).

 Same as in the reference points.

 :Label jump to this label if range test is negative.

 scale scale factor (decimal, floating point value)

SuperScale(:Label v1 v2 sx) -> FS98 SDK

SetScaleX(:Label V1 V2 SX)

 -

 Sets a sort of binary scale factor for reference

 points types ns and ShadowPos() .

 -

 V1, V2 visual range test parameters (used if not 0).

 Same as in the reference points.

 :Label jump to this label if range test is negative.

 SX This is actualy the exponent of the scale

 factor (integer).

 True scale factor is calculated as follows:

 scale = (2^SX) / 65536

 example:

 scale = (2^16) / 65536 = 1

 As a result the scale factor can only be set

 to a value which can be expressed as a power

 of 2 (devided by 65536).

 Another way to calculate scale is:

 scale = 1 / 2^(16-sx)

 with sx = 7 this results in:

 scale = 1 / 2^(16-7)

 = 1 / 2^9

 = 1 / 512

 Maybe this sort of scaling speeds up the

 internal calculations because the scaling

 can now be done by shifting. Do not confuse

 with 2*10^sx .

Points(firstnum x1 z1 y1 ... xn zn yn)

 -

 This command builds a table of 3D points. Normaly

 firstnum should be set to 0. Other values are used

 to change or expand an existing list. The number of

 points per area block is limited to 400 (200 in older

 versions, 800 in a 32-bit vers.).

DefPoint(index x z y)

 -

 Defines a single point in the list of points. Note,

 points defined with this istruction cannot be used

 with SCASM's automatic vector calculation feature

 unless this command is only used for updates.

 -

 index the index number of this point

VecPoints(m firstnum x1 z1 y1 vx1 vz1 vy1 ...

 xn zn yn vxn vzn vyn)

VecPoints(p firstnum x1 z1 y1 el1 hd1 ...

 xn zn yn eln hdn)

VecPoints(vattr firstnum x1 z1 y1 ... xn zn yn)

 -

 This command builds a table of vector points. The

 vectors are used for color shading with

 -> ShadedPoly(). If you have unregular shaped objects

 it may be better to calculate the vectors manually.

 In automatic mode the number of points are limited

 to 400 in this version. The automatic function gives

 the vector the direction from the RefPoint TO this

 point, but remember this is correct only for regular

 shaped objects. It is possible to suppress ONE vector

 component by using xy xz yz vattr. Other values may

 confuse the assembler. For example you may use

 "xy"-flags for a cylindric gas tank.

 -

 x# z# y# coordinates of a point (integer)

 vx# vz# vy# components of a vector

 firstnum number of first point (usually 0).

 vattr vector calculation attributes, see

 above. (a, xy, xz, yz, p)

 el# elevation angle in degrees

 (-90° .. +90°)

 hd# heading angle

AutoPoints(firstnum numcount dx1 dz1 dy1 dx2 dz2 dy2)

 -

 This command draws nothing. It only calculates and

 fills a table of points. Numcount points are

 generated, where firstnum is the first one. You can

 think of this being a command to calculate the

 coordinates for a dotted line from P1 to P2 and than

 fills the point list.

 Note: In original sceneries this command was not

 found with a Numcount value above 7.

 Points defined with this command cannot be used with

 SCASM's automatic vector calculation feature!

MoveToPt(#)

 -

 Moves the drawing cursor to the 3D-coordinates given

 by the point #(number) of a list of 3D points which

 is previously defined by the Point() command.

 For lines and surfaces.

 -> Points(), ->VecPoints(), -> StartSurface,

 -> EndSurface, -> DrawToPt(), ConcavePoly

DrawToPt(# [#...#])

 -

 A drawing command from the previous point to this

 point# is executed. The points has to be defined in

 an 3D point list.

 This command is repeated for every # in the brackets.

StartSurface

 - FS5 - FS98

 not for FS2K

 If this command is entered, you can use the above

 commands to define a surface (covered with color or

 bitmap).

 -> EndSurface, -> SurfaceColor(), -> ConcavePoly,

 -> Bitmap()

EndSurface

 - FS5 - FS98

 not for FS2K

 This indicates the end of an surface drawn with the

 MoveToPT() and DrawToPt() commands.

MoveTo(x z y)

 -

 This command moves the drawing cursor to the 3D point

 which is defined by the given coordinates.

 For lines only. Do not mix the MoveTo()/DrawTo() type

 of instructions with the MoveToPt()/DrawToPt()

 instructions and also do not use it for 'shadowed'

 objects.

 -> LineColor(), -> Brightness(), -> DrawTo()

DrawTo(x z y)

 -

 A drawing command from the previous point to this

 point is executed. For lines only.

 -> LineColor(), -> Brightness(), -> MoveTo()

LineColor(num attr)

 -

 Sets the color for lines and dotted lines and single

 dots.

ShadedColor(num attr)

 -

 The color for shaded polygons is set. It seems this

 command also sets the surface color.

SurfaceColor(num attr)

 -

 num color code (hex)

 attr color attributes

 F0 normal colors, changes with time of

 day

 68 transparent colors

 69 direct palette color

 -

 Sets the color for normal polygons and surfaces

 defined with

 -> StartSurface - Move..() - Draw..() - Endsurface or

 -> Poly()

LoadSurfaceColor(FSvar)

 -

 The surface color code is loaded from a local

 variable.

LoadShadedColor(FSvar)

 -

 The shaded color code is loaded from a local

 variable.

LoadLineColor(FSvar)

 -

 The line color code is loaded from a local variable.

Bitmap(name.ext x dx dz dy)

 - FS5 - FS2K

 Load a bitmap (texture) file from the active TEXTURE

 directory.

 in FS5.0 and FS5.0a this is usually:

 C:\FLTSIM5\TEXTURE

 in FS5.1 this is could be:

 C:\FLTSIM5\TEXTURE general/global

 texture

 directory

 OR

 C:\FLTSIM5\MY_SCEN\TEXTURE the local

 active scenery

 texture

 directory

 -

 Bitmap files often have extensions '.R8' but there

 are also bitmaps with other extensions. I think the

 '.R8' extension should be reserved for the "global"

 textures which are stored in the genaral texture

 directory. Therefore I recommend to use your own

 extension if your texture is not supposed to be

 shared with other sceneries. However, some authors

 and users prefer to use always the .R8 extension for

 easier recognition of texture files. Therefore it is

 important to mention these extensions in your scenery

 documents.

 -

 name.ext The name of the bitmap file. You

 cannot specify any drive or path name

 in this instruction

 (limit in BGL file format).

 dx x offset in RefPoint units

 dy y offset

 dz z offset, normaly 0

 x unknown (decimal).

 Often found values: 0, 1, 8

 Note:

 The bitmaps for FS5 are a simple 256 x 256 pixel

 (/texel) arrays using 1 byte per pixel. Note the

 following x, y pixel adress:

 top left 0 0

 top right 255 0

 bottom left 0 255

 bottom right 255 255

 For some reasons bitmaps drawn with

 Bitmap() - StartSurface - MovetoPt() - ... -

 Endsurface

 are drawn top down !

 The standard color palette is stored in FS5.PAL (in

 FLTSIM5\TEXTURE dir). You cannot view/edit these

 bitmaps with normal drawing programms but there are

 several "R8" editors available in flight simulation

 related BBS's.

RepeatBitmap(dx dz dy)

 - FS5 - FS2K

 Repeat/reactivate a still loaded bitmap. Parameters

 are the same as in Bitmap().

BitmapMode(first_color)

 -

 preliminary, name may be changed in next versions

 (Bitmap copy mode)

 It seems this command controls the handling of the

 pixels in a bitmap. This command sets the first color

 index number which is copied ito your scenery.

 Use this instruction only with TexPoly().

 -

 first_color Decimal value 0 .. 255. This is the

 first color number to be copied.

 Do not forget to change back to 0

 (normal). All colors from 0 to this

 value appearing to be transparent.

 Note: It is reported to me that this command causes

 problems if used with the new LoadBitmap() command.

 So use it only with the old FS5 Bitmap() command.

Inst_81(state) ; old, not longer supported

AntiAlias(state) -> FS98 SDK

Smoothing(state)

 - FS5 - FS2K

 This instruction is found very often just following

 the Bitmap() instruction. It seems this instruction

 controls the image smoothing for ground textures. It

 comes into effect when the option image smoothing is

 set in the preferences display option menu.

 -> TexWindow(), -> ShadedTexPoly()

 -

 state 0 off

 1 on

MipMap(state) -> FS98

 -

 state 0 off

 1 on

 -

 This instruction switches mipmapping on/off.

 This command is mentioned in the FS98 SDK but

 doesn't seem to work as expected.

Transparency(mode) 2.11 / FS98

AlphaColor(mode) -> FS98SDK

 -

 Different modes of transparent color effects are set.

 Use this command with the normal Poly() command if

 you want a transparent polygon. This is the propeller

 disk effect in FS98. (alpha blending)

 Note, it is very important to switch this mode off

 after drawing the last Polygon.

 Otherwise a page fault in the FS98 module HG2D.DLL

 may happen.

 -

 mode hex number:

 0 transparency mode OFF. Don't forget to

 use this command to switch back to normal

 color mode.

 1 nearly complete transparent

 ...

 F highest density in transparent mode, not

 longer transparent since the result is

 always gray.

 1x different modes of "funny" color effects

 -

 Example:

 Area(5 Lat Lon 5)

 PerspectiveCall(:alpha)

 Jump(:)

 ;

 :alpha

 Perspective

 RefPoint

 (rel :endobj 1 Lat Lon v1= 5000 v2= 100)

 Points(0

 -20 0 0

 -20 40 0

 20 40 0

 20 0 0

)

 AlphaColor(6)

 Poly (a 0 1 2 3)

 Poly (ai 0 1 2 3)

 AlphaColor(0) ; important !!!

 :endobj

 Return

 ;

 EndA

MoveTexture(x1 y1 x2 y2)

TextureBounds(x1 y1 x2 y2) -> FS98SDK

 -

TextureEnable(s) 2.20

 -

 s state s = 0 disabled

 s = 1 enabled

 -

 This instruction disables or enables an texture.

 Mainly this instruction is used to disable a texture

 after drawing a textured river or an textured

 taxiway.

Palette(name.ext)

 -

 The color palette file 'name.ext' is loaded. You

 cannot specify a drive or path name since this BGL

 code only supports 8.3 DOS name convention.

 You do not need this instruction if you are using the

 FS5 default color palette for your bitmap/texture

 files.

 Note, if you are using FS5.1 you will also need a

 corresponding *.HAZ file otherwise you cannot use the

 haze option with your scenery.

CustomColors(dec_num)

 -

 This command is used to reduce the number of

 customised colors (normally 64) in the active color

 palette to gain some space for special night color

 effects. You must have (or generate)

 a matching color palette file.

Brightness(1 - 100)

 -

 This command sets the brightness for a color. The

 range is from 1.0 to 100.0 percent.

 -> LineColor(), -> Surfacecolor()

 & Startsurface .. Endsurface

DotLine(x1 z1 y1 x2 z2 y2 num)

 -

 A dotted line from point(x1 z1 y1) to

 point(x2 z2 y2) is drawn. The number of dotts is

 num. The color of the dot is selected with

 -> LineColor()

Dot(x z y)

 -

 A single dot is drawn at the point(x z y). The color

 of the dot is selected with -> LineColor()

DotPt(#)

 - not for FS2K ?

 A single dot is drawn at the point with the

 number # of a predefined list of points. The command

 is repeated as many times as there are dot numbers in

 the brackets.

 -> LineColor(), -> Points()

Ball(size x z y) -> FS98 SDK

BigDot(size x z y)

 -

 A big dot is drawn at the position defined by the

 x y and z coordinates. This command is used for some

 interesting light effects. Set the color with

 LineColor() AND SurfceColor().

 The function of the size parameter is not absolutely

 clear now. Recommended value for size is 512. Format

 of the size parameter may be changed in future

 versions.

ConcavePoly

Concave -> FS98SDK

 -

 Indicate to the drawing system that a concave polygon

 follows. Does not work with bitmaps in FS5.0.

 -> Poly(), -> StartSurface - Move..() - Draw..()

 EndSurface

Poly(vattr [vx vz vy len] pnum1 ... pnumn)

Poly(m vx vz vy len pnum1 ... pnumn)

Poly(a pnum1 ... pnumn)

 -

 A polygon is drawn with the points pnum1 to pnumn of

 the actual point list and with the actual surface

 color.

 Note: All polygons are only visible only from one

 side. The vector parameters indicate the direction

 from where the polygon can be seen. The brightness

 of the used color varies with the angle of the light

 source (the sun, day of time).

 Note! It seems FS5 cannot handle more than 100

 vertices in any single Polygon. Therefore SCASM now

 generates an error message on every ..Poly..()

 command if more than 100 vertices

 are detected. (in FS98 the limit may be 80 vertices)

 -> SurfaceColor(), -> Points()

ShadedPoly(vattr [vx vz vy len] pnum1 ... pnumn)

ShadedPoly(m vx vz vy len pnum1 ... pnumn)

ShadedPoly(a pnum1 ... pnumn)

 -

 A shaded polygon is drawn. The shading requires 3D

 points defined with the VecPoints() statement and

 ShadedColor(). The shading is used to get a smoth

 change of the brightness from one polygon to the

 next. This can make an octagonal object

 looking perfectly round. -> ShadedColor(),

 -> VecPoints()

TexWindow(vattr [vx vz vy len] pnum1 ... pnumn)

TexWindow(m vx vz vy len pnum1 ... pnumn)

TexWindow(a pnum1 ... pnumn)

 - FS5 only ?

 pnum# number (index) of a point from the point list

 -

 Defines a window through which a bitmap is shown.

 The window should not be concave.

 Do not use it for FS6/FS95 or later sceneries !!

TexPoly(vattr [vx vz vy len] pnum1 bx1 by1 ..pnumn bxn byn)

TexPoly(m vx vz vy len pnum1 bx1 by1 ..pnumn bxn byn)

TexPoly(a pnum1 bx1 by1 ..pnumn bxn byn)

TexPoly(at pnum1 ..pnumn)

 -

 Draws a polygon covered with a texture bitmap. The

 points has to be defined with the Point() command.

 The polygon is always drawn with the same brightness,

 regardless to the location of the sun. The brightness

 can be changed using TexPolyShading() if the bitmap

 is prepared for that (see -> TexPolyShading()).

 The bitmap-point bx1-by1 is tied to ptnum1 and so on.

 Image smoothing does not work with this command.

 Color shading can be done with TexPolyShading() and

 a special prepared bitmap.

 -> Bitmap(), -> Points(), -> TexPolyShading()

 -

 pnum# number (index) of a point from the point list

 bx# bitmap x coordinate (0...255)

 by# bitmap y coordinate (0...255)

 t,b,r -> see vattr, texture automatic

 -> see also annex 9 for more information

TexPolyShading(vx vz vy)

TexPolyShading(p el hd)

 -

 This instruction sets the shading intensity of

 building bitmaps (side#.R8) in conjunction with

 textured polygons (->TexPoly()).

 This shading requires a special prepared bitmap file

 with 8 areas one for each of the 8 intensity steps).

 -

 vx x-vector component

 vz z-vector component

 vy y-vector component

 p format flag -> polar coordinates, vector will

 be converted to FS5 format by SCASM.

 el angle of elevation

 hd angle of heading

ShadedTexPoly

 (vattr [vx vz vy len] pnum1 bx1 by1 .. pnumn bxn byn)

ShadedTexPoly

 (m vx vz vy len pnum1 bx1 by1 .. pnumn bxn byn)

ShadedTexPoly

 (a pnum1 bx1 by1 .. pnumn bxn byn)

 -

 Draws a shaded polygon covered with a texture bitmap.

 The points has to be defined with the VecPoints()

 command.

 The bitmap-point bx1-by1 is tied to ptnum1 and so on.

 The shading is done similar to ShadedPoly().

 Bitmap colors above 127 are shown as black!

 ->VecPoints(), ->Bitmap()

 -

 parameters see -> TexPoly() command.

VecPoly

 (vattr [dx dz dy vx vz vy] pnum1 ... pnumn)

VecPoly

 (m dx dz dy vx vz vy pnum1 ... pnumn)

VecPoly

 (a pnum1 ... pnumn)

 -

 A polygon is drawn with the point pnum1 ... pnumn of

 the actual point list and with the actual surface

 color.

 This polygon command is very similar to the normal

 Poly(...) command. It seems the only difference is

 the origin of the visibility vector. In auto mode

 SCASM copies the coordinates of the first point

 (pnum1 -> dx,dz,dy) as the origin point of the

 vector and then calculates the vector components

 (vx,vz,vy) as usual.

TexVecPoly(a pnum1 bx1 by1 ... pnum# bx# by#)

TexVecPoly(vattr dx dz dy vx vz vy

 pnum1 bx1 by1

 ...

 pnum# bx# by#

)

 -

 This is the textured VectorPolygon (-> VecPoly())

 This instruction draws a polygon using the points

 pnum1 to pnum#. Like other textured polygon commands

 each point is combined with a specific pixel of a

 bitmap.

 -

 vattr vector attibutes (i.e. 'a') to

 indicate how SCASM should handle

 vector data.

 a automatc mode,

 dx,dz, dy, vx, vz, vy are

 taken/calculated from the

 first 3 points.

 m manual mode, all vector data

 must be entered.

 t,b,r -> see vattr, texture

 automatic.

 dx, dz, dy offset koordinates of a point on the

 polygons surface. You can chose one

 of the points defining this polygon.

 vx, vz, vy The 3 vector components.

 pnum# The number (index) of a point

 (defined with Points(..))

TexRelief(x y wx wy dx dy

 px py alt

 ...

 px py alt

)

ElevationMap(...) -> FS98 SDK

 -

 A loaded bitmap is used to draw a textured relief on

 the ground. For this purpose a regular grid of

 rectangles is defined and each grid node is bound to

 specific altitude and texture point. Note, you are

 specifying the number of sides for the rectangels and

 the number of altitude points MUST match.

 The smallest grid is defined by X=1 and Y=1 and has

 4 grid points (vertices).

 This instruction should be used in a

 PerspectiveCall-ed subroutine. Be carefull; this

 command can be a real frame-rate killer.

 Note: Since this instruction also includes

 crash detection you should use it only with

 RefPoint(abs ...) and a corect altitude setting.

 -> PerspectiveCall, -> PerspectiveCall2()

 -

 x, y amount of grid rectangles in x and y

 direction

 wx width of an grid rectangle in x direction

 (east-west)

 wy width of an grid rectangle in y direction

 (north-south)

 dx x position offset of texture pixel 0,

 left bottom corner

 (related to the refpoint)

 dy y position offset of texture pixel 0

 left bottom corner

 (related to the refpoint)

 Note: Pixel 0 is the south-west (bottom left)

 corner of the bitmap.

 px texture pixel x coordinate

 py texture pixel y coordinate

 alt altitude value for the given pixel and the

 current grid point (integer)

Jump(:Label)

 - ALL

 Execution is continued at :Label

 The jumptable is deleted everytime a new Area() is

 started, so you can use the same name in different

 areas. This also means you cannot jump out af an

 Area()->EndA block.

 Note: If not noted otherwise, all jump's and call's

 are using relative adressing with a 16 bit

 displacement.

Jump32(:Label)

 - FS98/CFS/FS2K

 Jump with a 32 bit address displacement

 Mainly used in aircraft model files (.MDL)

VectorJump(:Label m vx vz vy len)

VectorJump(:Label a pnum1 pnum2 pnum3 ...)

VectorJump(:Label p elev_angle heading len)

SeparationPlane(...) -> FS98 SDK

 -

 The elements vx, vz and vy are representing a vector

 standing rectangular on a virtual plane (surface).

 Len is a distance in RefPoint-units. The following

 commands are executed if the distance from the viewer

 (aircraft) to the virtual plane measured in the

 vectors direction is greater than 'dist'.

 Otherwise execution is continued at :Label (Jump to

 :Label).

 In some cases the plane is identical with one of the

 surfaces of an object you have just constructed. If

 so you can use the auto-vector feature to calculate

 the vector and the distance.

 You have to enter only 3 point numbers of the object

 surface (polygon). If there are more, the others will

 be ignored.

 -

 Note: This instruction has the same function as the

 GLUE Template in the FSFS aircraft factory.

IfVarRange(:Label Var minval maxval)

 -

 The contents of the FS5 variable Var is tested. If

 the value is within the range of minval and maxval

 the execution is continued with the next command.

 Otherwise a jump to :Label is performed.

 - Var FS5 variable number in HEX.

 minval minimal allowed value (decimal/or 0x. hex)

 maxval maximum allowed value (decimal/or 0x. hex)

IfVarRange2(:Label Var1 MinVal1 MaxVal1

 Var2 MinVal2 MaxVal2

)

 -

 conditions ANDed

IfVarRange3(:Label Var1 MinVal1 MaxVAl1

 Var2 MinVal2 MaxVal2

 Var3 MinVal3 MaxVal3

)

 -

 5.1 only !

IfVarAnd(:Label Var Mask)

 -

 The contents of the FS5 variable Var is AND_ed with

 the value of Mask. If the result of this operation

 is TRUE execution is continued with the next command.

 Otherwise execution is continued at :Label.

 -

 Var FS5 variable number in HEX

 Mask Bitmask, any 16 bit HEX value

IfHRes(:Label r p)

IfHSize(:Label r p) -> FS98 SDK

 -

 The horizontal size/resolution is tested. If the

 object size given by r does not cover p pixels a

 jump to :Label is performed and the object is not

 drawn. But you can force FS to draw it just by

 increasing your zoom factor during flight.

 The effect is like using binoculars.

 -

 r object radius, integer

 p pixels, integer

IfVRes(:Label r p)

IfVSize(:Label r p) -> FS98 SDK

 -

 The vertical size is tested.

 -

 r object radius, integer

 p pixels, integer

SetVar(FSvar val)

 -

 FSvar FS5 local variable number in HEX

 val new value in decimal (or hex if started

 with 0x##)

 Please use upper case characters for hex

 numbers.

SetVar7E(FSVar val)

 -

 another SetVar instruction. Only found in some add-on

 sceneries. The difference to normal SetVar() is

 unknown.

Call(:Label)

Call32(:Label) ; version for 32 bit offset (FS98+)

 -

 Calls a subroutine at :Label. After the Return from

 the subroutine execution continues with the next

 command. -> Return

Return

 Returns the control to the next instruction after the

 ..Call() command. (Return from subroutine).

 Every subroutine MUST end with a Return command.

 All parts entered with a ..Call.. command should be

 considered as a subroutine.

 Most FS5 'database error' mesages are caused by

 forgoten Returns or misplaced Jump instructions.

 -> Call(), -> ..Call()

PerspectiveCall(:Label)

AddObj(:Label) -> FS98 SDK

 -

 Use it for drawing all 3 dimensional objects. This

 instruction causes FS5 to determine which objects

 or part of objects are hidden and which not. There

 is no need to draw flat ground surfaces (color or

 bitmap) with this instruction.

 Typical sequence:

 ;

 Area(...)

 PerspectiveCall(:House)

 Jump(:)

 :House

 Perspective

 RefPoint(:H_end ...)

 SurfaceColor(...)

 Poly(...)

 ...

 :H_end

 Return

 ...

 EndA

AddMountain(:Label) -> FS98SDK

PerspectiveCall2(:Label)

 -

 implemented for testing, name may be changed in

 future versions.

Perspective

 -

 This should be the first command in a subroutine

 called with PerspectiveCall(). If you forget this

 command you will see nothing or even crash !

ShadowCall(:Label)

 -

 The shadow of an static object at :Label is drawn.

 Do not direct a ShadowCall to a Perspective command,

 use the next command instead. Otherwise scenery

 hangups can happen.

 -> Return, -> see Building(...) example

ShadowCallVI(:Label var)

 -

 SHADOWVINSTANCECALL in FS98SDK

 This command is used to draw a shadow of variable

 objects. The position is specified in an array of

 variables. Used for dynamic objects.

RotatedCall(:Label xdeg ydeg zdeg)

 -

 The subroutine at :Label is called with rotated

 coordinates. The pivot point is the active

 RefPoint().

 -> Return

TransformCall(:Label delta_x delta_z delta_y

 x_deg xvar

 y_deg yvar

 z_deg zvar)

 -

 This is an expansion of the RotatedCall().

 A subroutine is called with transformed coordinates.

 That means you can assume the new temporary reference

 point is at the given delta_# distances from the

 original point. Also the coordinate system is rotated

 around this point according the #_deg values.

 Note: Shadows produced from the transformed scenery

 element will also be moved. This can cause funny

 flying shadows.

 -> Return

 -

 :Label Address of the subroutine which is called

 with a transformed coordinate system.

 delta_# linear displacement of the object (integer)

 #_deg rotation in degrees

 (floating point, i.e. -22.5)

 #_var variable (hex), 0 if not used !

CallAsm(:Label seg)

 - FS5, FS5.1 only

 Calls an 8086 assembly language programm at :Label

 I have no information about the seg (hex) parameter.

 Set it to 1. The assembly language instructions can

 only be entered using the Dbx(...) binary

 instructions family.

 FS5.x only, ignored by FS6.0/FSFW95 and later to

 avoid conflicts due to the new 32 bit environment.

 -> FS98SDK

RoadStart (width delta_x delta_z delta_y)

RiverStart (width delta_x delta_z delta_y)

TaxiwayStart(width delta_x delta_z delta_y)

RoadCont (delta_x delta_z delta_y ...)

RiverCont (delta_x delta_z delta_y ...)

TaxiwayCont (delta_x delta_z delta_y ...)

 -> old

RoadMoveTo(width delta_x delta_z delta_y)

RoadMoveTo2(width delta_x delta_z delta_y)

TaxiMoveTo(width delta_x delta_z delta_y)

RoadLineTo(delta_x delta_z delta_y ...)

RoadLineTo2(delta_x delta_z delta_y ...)

TaxiLineTo(delta_x delta_z delta_y ...)

 -

 Every ..Move../..Start instruction sets the starting

 point of a road or taxiway relative to the active

 reference point. The ..Line../..Cont instruction

 draws a road or taxiway from the previous point to

 the point defined in this instruction and stores his

 position as a starting point for an following

 ..Line../..Cont instruction.

 During dusk and nights roads have orange lights and

 taxiways have blue lights. The color can be chosen by

 -> SurfaceColor().

 If a texture is loaded just before these drawing

 commands the river or taxiway is drawn with this

 texture. You can use TextureEnable(0) to disable

 this texture.

 -

 width 1/2 width in refpoint units (integer)

 Negative values can be used to switch off the

 road/taxiway lights.

 delta_x distance in east-west direction from

 reference point or from the previous point

 (integer).

 delta_z height difference, usually 0 (int)

 delta_y distance in north-south direction from

 reference point or from the previous point

 (integer).

 Note! The ..LineTo() commands are repeated as many

 times as there are coordinate triples in the

 brackets.

 Both name versions are available and generate the

 same code. The new names are added for better match

 with the FS98 SDK.

 Important note: For FS2K use RRStart() for roads and

 rivers.

Runway related commands:

LayerCall(:Label layer)

 -

 Ground surfaces drawn within a LayerCall'ed

 subroutine are sorted according to their layer number

 before they are drawn into the scenery. The sorting

 is done with all currently visible scenery elements,

 even if they are in different BGL files. This calls

 one or more RunwayData records -> see example.

 Please see the example for the RunwayData()

 instruction.

 -

 layer number (1 to 63 decimal) of a priority layer

 (category layer in FS98SDK) for a flat

 surface polygon to cover the ground. Polygons

 with higher number are always drawn on top of

 the others.

 Use the following layer / category numbers:

 4 Mesh, seed, ground

 8 ground polygon / texture overlays

 12 river

 16 road

 20 lines, strobes

 24 runways, taxiways

 28 mountain

 60 shadows

 Note: It is reported that only layer numbers

 4, 8, 12, 16 ... are working in FS2K

RunwayData(Lat Lon <List_of_parameters_in_any_sequence>)

 -

 Runway data record. the Lat Lon parameters must be

 the first one (without any keyword). All other

 parameters are entered in any sequence and are

 identified by the keyword. There must be a space

 character between the keyword and the data. The

 capital letters N and F are representing the

 Near/Far end data. The near end of the runway is that

 one nearest to you when landing on that end which

 corresponds with HEADing. Default value for all

 omitted fields is 0. Runway data are usually embedded

 in type 5 Area() blocks.

 Note, this instruction changes the scaling factor!

 -

 ALTitude runway altitude in meters MSL

 (floating point values accepted).

 Please note, you are only drawing a

 picture of the runway at this

 altitude. You can fly through

 this picture if this value does not

 match with the ground level. Use

 Synth blocks to adjust the ground

 level !

 HEADing true heading of the runway in degrees

 (float)

 LENgth runway length in ft (integer)

 WIDth runway width in ft (integer)

 ID runway ID number, additional

 characters [L|R|C] are allowed.

 ID numbers are shown only if the

 ID-bit in parameter "Markers" is set!

 SURFace number of surface type

 0 mud,

 1 concrete,

 2 asphalt,

 3 grass

 Markers Two digit hex value. Add the

 corresponding values of the required

 feature.

 01 white border line (Edge Line) at the

 left and right side (no effect on

 FS5.0)

 02 treshold marker bit, enables the

 'piano key' painting at the runway

 ends.

 04 touchdown markers, enables the touch

 down zone marking 150m (492ft) from

 the runway threshold.

 08 Fixed distance marker, enables 2 fat

 distant markerings 300m (984ft) from

 the runway threshold.

 10 center line

 20 ID number

 40 distance markers, enables distant

 markings about every 150m. This bit

 also enables the color change to

 yellow for the far away runway edge

 lights.

 80 ???

 Lights One digit hex value, controls the

 ligths at the sides of the runway.

 00 off

 01 low intensity light

 03 high intensity light

 04 centerline lightning on

 The following parameters are available for both ends

 of the runway. These ends are identified by the last

 letter

 N=near / F=far end.

 The near end is defined by the "Heading" parameter.

 It is that end of the runway near to you when

 aproaching at the given heading.

 ThrLightsN ThrLightsF Hex value

 01 enables the green/red

 treshold lights

 04 enables REIL (Runway End

 Identification Lights,

 white flashlight, ignored

 by some older versions).

 You MUST switch on the

 threshold light if you want

 aproach lights or VASI.

 StrobesN StrobesF number of strobes (dec)

 VasiSlopeN VasiSlopeF VASI slope in degrees

 VasiSideN VasiSideF VASI distance from the center

 line in ft (int). To indicate

 the side you can use the

 characters R or L instead of

 a -/+ sign

 (i.e. VasiSideN L120). If

 there is no L/R SCASM assumes

 the VASI on the left side.

 The side is always indicated

 from the pilot.

 VasiDistN VasiDistF VASI distance from the middle

 of the rwy in ft. No sign is

 needed !! A '-' sign will

 reverse the direction. For a

 2-bar VASI this distance is

 measured to the middle of the

 2 bars. This distance should

 correspond to the touch down

 markers (->Markers) and the

 ILS-GP.

 VasiSpaceN VasiSpaceF Spacing between the VASI

 elements in ft.

 VasiBarsN VasiBarsF Number of VASI bars.

 0 no VASI

 1 2 bars

 2 3 bars

 AprLN AprLF Aproach lights type(decimal).

 Be sure you have threshold

 lights enabled.

 0 none

 1 syncronous flashing

 strobes

 2 MALSF

 3 MALSR

 6 ALSF-1

 7 ALSF-2

 8 running strobes

 9 similar to 10,

 without the red

 lights crash

 (FS5.0 german

 version w/o update)

 10 ICAO III

 (ignored by

 FS5.0 w/o update)

 ThrOffN ThrOffF Offset distance in ft for

 displaced thresholds. This

 section is subtracted from

 the runway length and is

 painted with white arrows.

 Ignored by older versions.

 This parameter changes the

 threshold light pattern !

 ExtN ExtF Runway extension. This

 pre-threshold area is

 painted with a yellow chevron

 marking pointing to the

 threshold. This length is

 added to the runway. This

 area is not available for

 taxing and landing. This

 parameter changes the

 threshold light pattern !

 This is a typical sequence for a runway block:

 ;

 Area(5 N54:11:13 E07:55:00 15)

 LayerCall(:runways 24)

 ;

 Jump(:)

 ; note! the Label is omitted, this is a Jump

 ; to the end of block

 :runways

 ;

 ; first runway record

 ;

 RunwayData(54:11:17.0493 07:54:57.7855

 altitude 3.5

 heading 57.2

 lenth 846

 width 40

 surface 1

)

 ;

 ; next runway record

 ;

 RunwayData(54:11:16.2394 07:55:00

 alt 3.5 heading 27.2 id 3

 lenth 4788 width 98

 surface 2 lights 13 markers 36

 THRLightsF 1 THRLightsN 1

 VASIBarsF 1 VASISpaceF 330

 VASIdistF 1115

 VASIsideF r120 VASIslopeF 3.0

 VASIBarsN 1 VASISpaceN 330

 VASIdistN 1115

 VASIsideN L120 VASIslopeN 3

 ThrOffN 740 ThrOffF 740

)

 ;

 ; last runway record

 ;

 RunwayData(54:11:10.4085 07:54:58.0623

 alt 3.5 head 327.2 len 1312

 wid 98 surf 1 id 33

 markers 32

)

 Return

 ;

 ; Do NOT FORGET this Return !!!

 ; =============================

 ;

 EndA ; this marks the end of the Area block

RunwayLights(<list_of_parameters_and_values>)

ApproachLights(<list_of_parameters_and_values>)

 -> FS98SDK

 -

 This command is very similar to RunwayData() but

 is more elementary. When working with bitmaps you

 may already have a photo of a runway so you probably

 do not want to create a second one. This command

 enables you to iluminate your bitmap runway.

 Usually you will need one of this commands for each

 runway end with the same heading. You must set the

 'ThrLights' parameter to enable the other lights.

 To make this command compatible with the RunwayData

 command you should use a special scaling factor

 (0.3048). The altitude setting must be done in the

 RefPoint(2 ...).

 Note: SCASM 1.6 has a bug in some of this parameters.

 -

 HEADing heading in degrees, fractional

 numbers allowed

 LENgth distance (position) of the threshold

 lights measured from the center point

 (usually half the runway length). Use

 negative values for the near end.

 Depends on the scaling factor

 WIDth runway width, depends on the scaling

 factor

 ThrLights see -> ThrLights#

 Strobes number of strobes

 VasiBars see -> VasiBars#

 VasiSlope see -> VasiSlope#

 VasiSide see -> VasiSide#

 negative values for near-left or far

 right, positive values for near-right

 or far left

 VasiDist see -> VasiDist#

 negative values for near end,

 positive for far end.

 VasiSpace see -> VasiSpace#

 AprL see -> AprL#

Building(delta_x delta_z delta_y

 height x y type wallflags)

 -

 This command draws one of the FS5 internal standard

 buildings. Normaly you should use an own RefPoint()

 for each building.

 You can rotate a building with RotatedCall().

 -

 delta_? delta coordinates from the active Reference

 point, usually 0 (int). Caution, if you are

 using large Delta_? values you may notice

 some strange visibility effects with other

 buildings nearby! For beginners I strongly

 recommend to use zerovalues. Also each

 building should have its own Reference point

 and its own PerspectiveCall() instruction as

 in the example.

 height the height of the building. It seems this is

 measured in number of floors where each floor

 is 4 refpoint units (int).

 x, y X/Y (east-west/north-south) dimensions (int)

 of the building.

 type hex value, the lower 3 bits are coresponding

 to the SIDEx.R8 bitmaps files. To get the

 desired type add one value from each group.

 00 beige with vertical stripes

 01 white with vertical stripes

 02 dark gray with vertical stripes

 03 gray with vertical stripes

 04 white with dark vertical stripes

 05 white with horizontal stripes

 06 beige with horizontal stripes

 07 light gray with vertical stripes

 The bits 3 and 4 defines the shape of the

 building.

 00 normal building.

 08 inclined roof, roof pointing to the

 north.

 10 inclined walls, like a pyramid.

 18 octogonal building, -> additional

 wallbits needed.

 8000 Instead the predefined SIDE#.R8

 bitmaps a user defined bitmap is

 used. ->bitmap()

 Use the Bitmap() command just before

 the Building().

 Note 1: the bitmap must have a

 special design.

 Note 2: It seems that FS does not

 allow to combine this option with

 other's.

 other bits unknown

 wallflags hex value. There is a bit for every

 wall and the roof. Normaly set to

 FFFF, 1FF or 1F.

 0001 roof

 0002 west

 0004 east

 0008 south

 0010 north

 0020 south-east

 (needed for octogonal

 Buildgs.)

 0040 south-west (-"-)

 0080 north-east (-"-)

 0100 north-west (-"-)

 ; example for the use of a rotated building with

 ; shadow

 ;

 Area(5 54:55:25.6584 8:20:19.7976 8)

 PerspectiveCall(:SubRoutine1)

 ShadowCall(:SubRoutine1a)

 Jump(:)

 :SubRoutine1

 Perspective

 :SubRoutine1a

 RefPoint(rel :no_building 1

 54:55:25.6584 8:20:19.7976)

 ; Note, since this refpoint lays in a subroutine

 ; the label must NOT point to the end of the

 ; block but to a Return command!

 ;

 RotatedCall(:SubRoutine2 0 0 -3.5)

 :no_building

 Return

 ;

 :SubRoutine2

 Building(0 0 0 5 35 50 0 1F)

 Return

 EndA

City

 - FS5 .. FS98

 This command generates a standard city, the same

 buildings as on some FS5 Synth tiles.

 ;

 ; Example:

 Area(5 53:42:30 07:49:20 80)

 PerspectiveCall(:A)

 Jump(:)

 :A

 Perspective

 RefPoint(7 :B 16 53:42:30 7:49:20 v1= 10000)

 City

 :B

 Return

 EndA

IfPlaneInBox(:Label xmin xmax zmin zmax ymin ymax)

 -> FS98SDK

Monitor3D(:Label xmin xmax zmin zmax ymin ymax)

 -

 The 3D area is monitored. If the aircraft is NOT in

 the specified area a jump to :Label is performed.

 The values are always in meters.

 Note, this command cannot be roteted (RotatedCall) or

 transformed (TransformCall) in FS5

 see -> MonitorTr()

AreaSense(:Label ptx0 pty0 ... ptxn ptyn)

 -> FS98SDK

SenseBorder(:Label ptx0 pty0 ... ptxn ptyn)

 -

 The following instruction block is executed if we are

 within the polygon defined by the list of point

 coordinates. Oterwise execution is continued at

 -> Label.

 Concave polygones are not allowed and the points

 should be entered in a clockwise order !

IfVis(:Label ptnum0 ... ptnumX) -> FS98SDK

MonitorPt(:Label ptnum0 ... ptnumX)

 -

 maybe renamed in future versions! Describtion

 incorrect.

 -

 Only found with 4 and 8 points!

 -

 This is a 3D monitoring instruction using point

 numbers for defining the 3D area.

 The following istruction block is executed if we are

 within the polygon defined by the list of point

 coordinates. Oterwise execution is continued at

 -> Label.

 Points have to be defined with the Points() command

 before.

MonitorTr(:label

 dx dz dy

 wx wz wy

 xdeg ydeg zdeg

)

 - FS 5.1 & FS95 & FS98 & FS2K

 This is the transformed 3D monitoring instruction.

 The monitored 3D area is shifted (from the RefPoint

 position) and rotated. A jump to :Label is performed

 if the aircraft is outside.

 -

 dx x offset from the actual reference point

 (int)

 dz z offset from the actual reference point

 (int)

 dy y offset from the actual reference point

 (int)

 wx total x width of the area (int)

 wz total z width/height of the area (int)

 wy total y width of the area (int)

 xdeg x rotating angle

 ydeg y rotating angle

 zdeg z rotating angle

SurfaceType(type width_x width_y alt)

 - FS5 .. FS98,FS2K

 This instruction lets you define the surface

 properties of a given rectangular area. Note, you

 cannot 'harden' an elevated surface with this

 command! Use aditional section 16 commands for this.

 -

 type 0: smooth surface, runnway, taxiway

 1: rough surface, grass

 2: water surface, causes

 splash / crash

 width_x

 width_y N-E / N-S deviation, depends on the

 scale factors in the RefPoint()

 command. The width is measured from

 the left (or upper) side to the

 right (or lower) side. (integer)

 alt Altitude of the surface measured in

 meters (integer).

 In FS2K I found this parameter

 always 0.

Inst_7D -> obsolete, use POverride

 This instruction is used very often just before

 TexPoly() and ShadedTexPoly(). It seems this

 instruction prevents the bend up

 effect of the bitmaps when getting close to it.

POverride -> FS98SDK

 -

 Perspective Override

 This instruction causes FS to use a special processor

 for the next 3 or 4 vertex textured polygon. This

 reduces the texture distortion.

 For more information please see the FS98SDK.

TimerSw(:Label) -> obsolete, don't longer use, vers 1.7

SetWeather(:Label) -> FS98SDK

 - FS5 .. FS98,FS2K

 This instruction works like a timer controlled

 switch. The following code is executed once about

 every second to set new weather conditions. You can

 test this with 3D objects.

 The programm code that defines the lift must follow

 imediately this instruction and must end with Return.

 :Label points to an instruction where to continue,

 after the lift is created or if the switch is not

 active. This is usually the end of an Area() block.

 -

 example:

 Area(5 ...)

 SetWeather(:end)

 ; TimerSw(:end) ; old

 Perspective

 RefPoint(rel :end_lift ...)

 IfPlaneInBox(:end_lift ...) ; to limit the

 ; border of the

 ; lift area

 ...

 Weather(14C 200 6000 0) ; Lift in older

 ; versions

 :end_lift

 Return ; very important !

 ;

 :end

 EndA

Lift(flags dir factor extra) obsolete, vers. 1.7

Weather(flags dir factor extra) -> FS98SDK

 - FS5 .. FS98,FS2K

 This is the instruction to change the weather

 conditions. In the moment only thermal lift and lift

 by deflected air are known. Thermal lift seems to

 work always if the sun is shining<g>. Lift produced

 by deflected air only works if surface wind is

 enabled in the weather menu and the wind direction

 is similar to the "dir" parameters. The strength

 of the lift depends on the wind speed, wind direction

 and the factor (of lift ?). Depending on the wind

 speed (10..40 kts) the lift factor is typicaly from

 6000 to 1000.

 -

 flags hex value, typical values are 14C, 34C, 44C

 first digit:

 1.. enables lift created by deflected air

 2.. enables turbulent air

 4.. enables thermal lift. Thermal lift

 depends on the time of day. It seems

 the other parameters have no effect

 on thermal lift.

 .4C always found this value. Setting it

 to 00 or FF seems to do nothing.

 dir direction (heading in degrees) from where the

 wind should come to produce a maximum of

 lift. Only valid if "flags" are "1..".

 factor this factor is used to control the amount of

 lift. Typical values are 2000 to 6000. The

 format of this parameter may be changed in

 future versions.

 extra unknown, set to 0.

LightBeamCall(:Label varptr vx vz vy) -> SCASM 2.01

LandingLights(:Label varptr vx vz vy) -> FS98SDK

 -

 This instruction is used to generate the aircrafts

 landing lights.

 -

 varptr points to a set of local variables which

 holds the position data of this object.

 vx

 vz

 vy the vector components of the light beam

Nop

 -

 No Operation. This command does nothing. It only

 occupies 2 bytes.

 Usefull for patch programms or to make space for

 later patches. Same as Dwx(0x02).

PolyM(a pnum1 ... pnumn)

PolyM(m vx vz vy len pnum1 ... pnumn)

PolyM(vattr [vx vz vy len] pnum1 ... pnumn)

 - SCASM 2.08,FS98,FS2K

 This command draws a polygon similar to the Poly(..)

 type. A SurfaceColor() should be defined first. This

 polygon can be filled with a texture if the Bitmap()

 command is used. The advantage of this command is,

 that multible polygons can be drawn with this single

 command and every polygon can have one "concave

 point".

 There is no need to use the ConcavePoly command, but

 you have to start with the "concave point". This

 point must be marked by a "-" sign, even if the

 point index is zero!

 Note: Due to the binary format in the BGL code it

 is not possible to use point numbers larger than 127.

 Example:

 ...

 Points(0

 -327 0 861 ; 0

 -246 0 792 ; 1

 -101 0 619 ; 2

 43 0 135 ; 3

 309 0 -515 ; 4

 328 0 -740 ; 5

 269 0 -860 ; 6

 272 0 -540 ; 7

 -148 0 615 ; 8

 -260 0 751 ; 9

)

 SurfaceColor(4 F0)

 IfVarAnd(:B 340 FFFF) ; textured ground ?

 Bitmap(desert.r8 8 128 0 128)

 :B

 PolyM(a

 -8 9 0 1 2 3

 -7 8 3 4 5 6

)

 ...

The following 2 commands have experimental status (FS98).

Seed(s1 s2 obj xsize ysize alt s w r)

 -

 s1,s2,obj see SCASEED.DOC

 xsize dimension in east-west direction

 (meter, integer)

 ysize dimension in nort-south direction (")

 alt altitude (meter)

 s south edge (->SDK), whatever that means

 w west edge (-SDK)

 r random number (->SDK)

 -

 I implemented this instruction with the information

 in the FS98SDK but I could not get it to work

 correctly.

SeedAddObj(:Label)

 -

 This instruction adds a Seed() to the radsort queue.

 So it seem to have the same effect to a Seed object

 as a PerspectiveCall() to other objects.

 If you want to experiment with these instructions you

 can start with the following code:

 ;

 ; Seed.scm

 ;

 ; calling sequence:

 ; Macro(seed.scm Lat Lon alt)

 ;

 ;

 Area(5 %1 %2 5)

 SeedAddObj(:seed)

 Jump(:)

 ;

 :seed

 Perspective

 RefPoint(abs :endobj 1 %1 %2 v1= 32000 v2= 2000)

 Seed(8 0 1111 500 500 %3 0 0 12345)

 :endobj

 Return

 EndA

Some commands to produce any hex-value in the visual scenery area. These are included to give experts a tool for trying new scenery commands. Note, the internal instruction counter variable $IC always contains the relative address of the first value in a multi D..() instruction.

Dlx(hhhhhhhh) DefineLongHex. A 32 bit hex value is

 inserted.

Dld(dddddddd) DefineLongDecimal. A decimal value is

 converted in 32 bit hex format and

 inserted.

Dwx(hhhh .. hhhh) DefineWordHex. All hex values in the

 brackets are copied into the file.

Dwd(ddddd .. ddddd) DefineWordDecimal. All decimal values

 in the brackets are copied into the

 file.

Dbx(hh .. hh) DefineByteHex.

Dbd(dd .. dd) DefineByteDecimal

Dba(AbCdE) DefineByteASCII

Section 16 commands:

Besides other records this section contains data structures similar to section 9. With the following instructions you can define elevated surfaces above the ground level defined with Synth 1 ... Synth 6.

Area16(TopLat BottomLat RightLong LeftLong)

Area16(a Lat Lon ns-dist ew-dist) vers 2.07

Area16(g ns-dist ew-dist) vers 2.07

 -

 Defines an rectangular area around your elevated

 surface. Make sure that all used points are within

 this rectangular area.

 Atention: Due to the binary format of this command

 the total length of one Area16()...End16 is limited

 to 255 Bytes. Also the precision is limited, so it

 does not make much sense to enter seconds in the

 Lat/Long format.

 -

 There are 2 aditional formats for more flexible macro

 processing.

 a automatic, the bounadaries are calculated by

 using the given Lat/Lon values and adding the

 ns/ew distances to this point.

 example for a macro:

 Area16(a %1 %2 5.5 5.5)

 If %1 and %2 are the Lat/Lon parameters in

 this macro this defines an rectangle area of

 totally 11 * 11 kilometers around this

 location.

 g the same automatic as above, but no Lat/Lon

 values are expected. These are taken from the

 stored "general" reference point (-> GRP()).

 Area16(g 5.5 5.5)

 ns-dist distance in kilometers

 The north and south boundaries are calculated

 by adding this distance to both directions of

 the reference point.

 ew-dist distance in kilometers

 The east and west boundaries are calculated

 by adding this distance to both directions

 of the reference point.

End16

 -

 defines the end of this area16 instruction block.

SetElevation(elev)

 -

 Defines an elevated hard surface i.e. for a runway on

 a mountain. Elevated surfaces produced by this

 command are always smooth (good for runways).

 This instruction was found only in section 16 !

 -

 elev elevation (MSL) in meters (integer).

SenseBorder(:Label ptx0 pty0 ... ptxn ptyn)

 -

 the same as in section 9

RefPoint(abs ... E= 0)

 -

 the same as in section 9. Do not use other RefPoint

 types. Sometimes it is usefull to set parameter V1

 on large elevated surfaces.

RotatedCall(...)

 -

 the same as in section 9,

 Found in some original files but it seems this does

 not work in section 16 in early FS versions.

Return

 -

 the same as in section 9

Jump(:Label)

 -

 the same as in section 9

IfVarRange[n](:Label var minval maxval)

 -

 the same as in section 9

IfVarAnd(:Label Var Mask)

 -

 the same as in section 9

CallAsm(:label hval)

 -

 the same as in section 9

dbx, dwx, dlx, dbd, dwd, dld

 -

 the same as in section 9

other commands are simply ignored, no error message !

Example for an elevated surface:

 ;

 ; This defines the hard surface of the platform in

 ; the joke.stn in my early GERISNS scenery.

 ;

 Area16(54:43 54:41:30 7:12 7:07)

 Refpoint(abs : 1 54:42:06 07:10:00)

 SenseBorder(:

 -40 40 ; top left

 40 40 ; top right

 40 -40 ; bottom right

 -40 -40 ; bottom left

)

 ; remember to enter the points in clockwise order

 ;

 SetElevation(30)

 End16

--

Pseudo commands:

Pseudo commands are commands that do not produce any code. They are used to send aditional instructions or information to the assembler itself.

Include(filname.ext)

 -

 Includes this text file. The file is simply copied

 into your 'main' source file. In SCASM 2.10 and later

 an include file can contain other Include()'s or

 Macro()'s.

 Any correct path/filename is accepted (up to 260

 characters).

 This makes it possible to make a 'main' file like

 Header(...)

 LatRange(...)

 Include(...)

 ...

 Include(...)

 with all the other commands in the Include() files.

 Note, Include()'s are handled now as Macro()'s

 without parameters. You cannot use them to increate

 the nesting level.

Macro(filename.scm p1 ... pn)

 -

 Similar to include files the text of an macro file

 is simply copied into your source file. But the

 advantage of an macro is that parameters can be

 passed to it. These parameters are inserted into the

 text during compile time. This makes it very easy to

 'recycle' scenery objects. If you want to design

 a house, it is usually a good idea to do this as a

 macro file and use the strings %1 and %2 for the

 latitude and longitude values of its position.

 Now you can put this house into your scenery simply

 by puting its actual Lat/Lon position as parameters

 one and two into the Macro() instruction. SCASM

 allows up to 30 parameters and each can have 15

 characters.

 Macros are allowed in visual scenery (section 9),

 dynamic scenery (section 15) and section 16.

 In SCASM 2.10 and later macros are allowed to contain

 other macros. This nesting is limited to 8 levels,

 and Include()'s are handled now as macros without

 parameters.

 If a macro (file) name or a macro parameter contain

 spaces you have to use " to mark the begin and end of

 it (SCASM 2.15 and later).

 example:

 macro call: macro(example.scm N54:10 E10:05)

 macro file: Area(5 %1 %2 20)

 -> %1 is replaced by N54:10

 -> %2 is replaced by E10:05

 Note: In most cases macros will contain a whole

 Area() block. But if you are using the macro feature

 to generate some code within an area (for example

 'hand made' aproach lights in an runway area), and

 if you are using the same macro more than once in

 the same area, and if the macro contains label

 definitions you will get an "duplicated label error".

 To avoid this you can include the special '@'

 character in the label name. This character causes

 SCASM to insert the internal macro counter in the

 Label name. Since the internal macro counter is a

 3 digit code the name is then limited to 12

 characters.

 example:

 :Label@ is expanded to :Label095 during the

 expansion of the

 95th macro.

Mif(<expression>)

Melse

Mifend

 -

 These pseudo commands are used to enable and control

 conditional compilations. In earlier SCASM versions

 they are only used in macros for visual scenery.

 That's why they have the "M" in the name. Now they

 can be used anywhere in the source text and they

 even can be nested (up to 8 levels).

 <expression> can be a mathematical formula or a

 single number.

 -

 mif(%1)

 mif([%2 == 3])

 The macro parameter 1 is tested.

 If it's value is NOT 0

 (that is TRUE) the following commands

 are compiled. Only a zerotest is

 done.

 In example 2 the expression

 "[%2 == 3]" is evaluated and then

 tested.

 see -> annex 1 for expressions and

 operators.

 melse Optional. If the 'mif(%#)'

 condition is FALSE

 this section is compiled by the

 assembler.

 mifend Marks the end of the conditional

 compilation.

 If an error is detected and the compiling condition

 is FALSE, then the error messages will have the line

 number of the Mifend command.

CopyRight(any text with up to 80 characters)

 -

 This text is inserted into the binary output file so

 you can identify your work with an hex file viewer.

 It has no effect to FS. This command should be used

 only once per source/BGL file. If this command is

 found more than once, only the last one is used

 (no error message). For this reason it is not a good

 idea to use it in a macro file.

 No underscores '_' are needed for SPACE characters in

 the text.

Uvar($name value) 1.7 and later

 -

 This is an internal command to set an SCASM internal

 user variable. This command has no effect to the BGL

 code. User variables can be used by experts for more

 flexible parameter calculations.

 Note: variables which are defined within an Area()

 are only valid in this Area() and are deleted when

 the EndA statement is compiled. Other variables are

 always valid.

 SCASM can handle up to 100 user variables.

Map(stat)

 -

 This is another internal command which can be used to

 suppress the map file generation for some parts of

 the source code file.

 See also the "-m" command line option.

 -

 stat	1 = on,

 0 = off

 -

 For more information please see the documentation

 which comes with the BGLTST.EXE program which uses

 this information to display the source code line(s)

 related to an detected error.

Error(any error message)

 -

 This command is an pseudo command, which means that

 it does not generate any BGL code. It produces an

 error message and stops SCASM. Some experts asked me

 to include this instruction.

 Can also be used as a reminder for changes you want

 to do later. This command can also be used to avoid

 the compilation of a macro .API file with an obsolete

 compiler version. For example, if internal functions

 (version 2.02 and later) are used for the parameter

 calculations, you can use this instruction to notify

 the user that he needs an compiler

 update:

 ...

 mif([$Version < 202])

 Error(You need at least SCASM 2.02 to

 compile this code)

 mifend

 ...

 Points(0

 -15 0 int[%6 / 2]

 ...

)

 ...

 In this example the macro receives a parameter from

 the caller. If the %6 macro parameter has the value

 15 the result would be 7.5. Since FS does not accept

 fractional numbers in point coordinates, an error

 message is normally generated. The int[] or the

 round[] functions can now be used to convert the

 number format but these are not available in earlier

 versions.

VTrace(mask "any text" <expression>)

 -

 This is an SCASM internal test command for debugging.

 It does not produce any code. You can use this

 command if you want to know the result of of some

 SCASM calculations.

 The output is done to the standard error device,

 which is the screen or the "SCAERROR.LOG" file.

 -

 mask This is a bitmask in HEX format to

 indicate the section when this command

 shal be executed. If you are unsure

 about this value set it to -1

 (or 200 for section 9, visual scenery).

 "any text" Any text you want to see on the output

 device. (max 120 chraracters)

 <expression>	Any valid expression in SCASM syntax.

 -> see annex for more information

Set(flag value)

 -

 table of flag names:

 interr Same as -i switch, 1 = ignore integer

 errors. Default = 0

 fmtcast Same as -f switch, 0 = format casting

 disabled. Default = 1

 ppperr Number of points per polygon to trigger the

 error message. Default = 100.

 areamx Maximum allowed size of an Area() block in

 KB. Default = 16, maximum 64.

 area15mx Maximum allowed size of an Area15() block

 in KB. Default = 16, maximum 64.

 RAW 1 | 0 enables or disables the -RAW switch

 -> -raw

 LOGFILE 1 enables error output to SCAERROR.LOG

 -> -l

 MAPFILE 1 enables the mapfile (.MPF) output

 -> -m

 OBJID This flag controls the object ID generator

 when object libraries are compiled (2.36+).

 1 (default) ID0 value is incremented

 0 ID3 value is incremented. Only needed

 for backward compatibility.

 -

 Some users wanted to have access to SCASM internal

 flags and error threshold values. This can be done

 with this command.

 A change of some of these values may probably result

 in display problems in some FS versions.

 This command should be placed at the beginning of the

 source code file (before any other command causes

 dynamic memory allocation) and is not recognised if

 placed in macro files. This is because macros are not

 completely scanned during the first source scan.

--

